Identifying and classifying twins pose challenges, yet hold significant applications in medical research, forensic science, and social science. In recent years, machine learning has emerged as a promising approach to ...
详细信息
Human activity recognition (HAR) techniques pick out and interpret human behaviors and actions by analyzing data gathered from various sensor devices. HAR aims to recognize and automatically categorize human activitie...
详细信息
In recent years, artificial intelligence has undergone robust development, leading to the emergence of numerous autonomous AI applications. However, a crucial challenge lies in optimizing computational efficiency and ...
详细信息
In the current era of smart technology, integrating the Internet of Things (IoT) with Artificial Intelligence has revolutionized several fields, including public health and sanitation. The smart lavatory solution prop...
详细信息
Existing learning models partition the generated representations using hyperplanes which form well defined groups of similar embeddings that is uniquely mapped to a particular class. However, in practical applications...
详细信息
Sequence-to-sequence models are fundamental building blocks for generating abstractive text summaries, which can produce precise and coherent summaries. Recently proposed, different text summarization models aimed to ...
详细信息
Background: In the wake of escalating cyber threats and the indispensability of ro-bust network security mechanisms, it becomes crucial to understand the evolving landscape of cryptographic research. Recognizing the s...
详细信息
In mountainous regions, bamboo has gained popularity as a local reinforcement material for concrete due to its availability and cost-effectiveness. However, the lack of standardized design guidelines complicates the a...
详细信息
Omnidirectional images provide an immersive viewing experience in a Virtual Reality (VR) environment, surpassing the limitations of traditional 2D media beyond the conventional screen. This VR technology allows users ...
详细信息
Omnidirectional images provide an immersive viewing experience in a Virtual Reality (VR) environment, surpassing the limitations of traditional 2D media beyond the conventional screen. This VR technology allows users to interact with visual information in an exciting and engaging manner. However, the storage and transmission requirements for 360-degree panoramic images are substantial, leading to the establishment of compression frameworks. Unfortunately, these frameworks introduce projection distortion and compression artifacts. With the rapid growth of VR applications, it becomes crucial to investigate the quality of the perceptible omnidirectional experience and evaluate the extent of visual degradation caused by compression. In this regard, viewport plays a significant role in omnidirectional image quality assessment (OIQA), as it directly affects the user’s perceived quality and overall viewing experience. Extracting viewports compatible with users viewing behavior plays a crucial role in OIQA. Different users may focus on different regions, and the model’s performance may be sensitive to the chosen viewport extraction strategy. Improper selection of viewports could lead to biased quality predictions. Instead of assessing the entire image, attention can be directed to areas that are more importance to the overall quality. Feature extraction is vital in OIQA as it plays a significant role in representing image content that aligns with human perception. Taking this into consideration, the proposed ATtention enabled VIewport Selection (ATVIS-OIQA) employs attention based view port selection with Vision Transformers(ViT) for feature extraction. Furthermore, the spatial relationship between the viewports is established using graph convolution, enabling intuitive prediction of the objective visual quality of omnidirectional images. The effectiveness of the proposed model is demonstrated by achieving state-of-the-art results on publicly available benchmark datasets, n
Edge computing has emerged as a promising technology to satisfy the demand for data computational resources in Internet of Things (IoT) networks. With edge computing, processing of the massive data-intensive tasks can...
详细信息
暂无评论