咨询与建议

限定检索结果

文献类型

  • 575 篇 期刊文献
  • 385 篇 会议
  • 4 册 图书

馆藏范围

  • 964 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 641 篇 工学
    • 511 篇 计算机科学与技术...
    • 444 篇 软件工程
    • 129 篇 信息与通信工程
    • 111 篇 生物工程
    • 68 篇 控制科学与工程
    • 67 篇 生物医学工程(可授...
    • 63 篇 光学工程
    • 47 篇 电气工程
    • 47 篇 电子科学与技术(可...
    • 38 篇 化学工程与技术
    • 27 篇 机械工程
    • 18 篇 仪器科学与技术
    • 17 篇 土木工程
    • 14 篇 材料科学与工程(可...
    • 14 篇 动力工程及工程热...
    • 13 篇 建筑学
  • 399 篇 理学
    • 177 篇 物理学
    • 163 篇 数学
    • 126 篇 生物学
    • 51 篇 统计学(可授理学、...
    • 40 篇 化学
    • 24 篇 系统科学
  • 158 篇 管理学
    • 93 篇 图书情报与档案管...
    • 71 篇 管理科学与工程(可...
    • 32 篇 工商管理
  • 53 篇 医学
    • 51 篇 临床医学
    • 40 篇 基础医学(可授医学...
    • 30 篇 药学(可授医学、理...
  • 22 篇 法学
    • 22 篇 社会学
  • 12 篇 经济学
    • 12 篇 应用经济学
  • 4 篇 教育学
  • 2 篇 农学
  • 1 篇 文学
  • 1 篇 军事学

主题

  • 35 篇 semantics
  • 30 篇 speech recogniti...
  • 29 篇 training
  • 27 篇 machine learning
  • 20 篇 signal processin...
  • 18 篇 embeddings
  • 16 篇 speech enhanceme...
  • 16 篇 computational mo...
  • 14 篇 object detection
  • 14 篇 reinforcement le...
  • 14 篇 artificial intel...
  • 13 篇 acoustics
  • 13 篇 decoding
  • 13 篇 adaptation model...
  • 12 篇 deep learning
  • 12 篇 speech processin...
  • 12 篇 computational li...
  • 11 篇 syntactics
  • 11 篇 predictive model...
  • 11 篇 feature extracti...

机构

  • 179 篇 moe key lab of a...
  • 147 篇 department of co...
  • 60 篇 key laboratory o...
  • 53 篇 moe key lab of a...
  • 44 篇 department of co...
  • 32 篇 department of co...
  • 30 篇 moe key lab of a...
  • 28 篇 department of co...
  • 28 篇 x-lance lab depa...
  • 23 篇 suzhou laborator...
  • 22 篇 x-lance lab depa...
  • 21 篇 shanghai jiao to...
  • 17 篇 key lab. of shan...
  • 15 篇 aispeech co. ltd...
  • 15 篇 shanghai jiao to...
  • 13 篇 moe key lab of a...
  • 12 篇 school of artifi...
  • 11 篇 department of el...
  • 11 篇 moe key lab of a...
  • 10 篇 school of artifi...

作者

  • 121 篇 yu kai
  • 96 篇 zhao hai
  • 68 篇 yan junchi
  • 63 篇 chen lu
  • 59 篇 qian yanmin
  • 41 篇 zhang zhuosheng
  • 38 篇 yanmin qian
  • 37 篇 chen xie
  • 34 篇 yang xiaokang
  • 33 篇 li zuchao
  • 32 篇 wu mengyue
  • 29 篇 zhu su
  • 28 篇 junchi yan
  • 25 篇 niu li
  • 22 篇 guo yiwei
  • 22 篇 gao xiaofeng
  • 21 篇 kai yu
  • 20 篇 zhang liqing
  • 18 篇 cao ruisheng
  • 18 篇 chen zhengyang

语言

  • 864 篇 英文
  • 89 篇 其他
  • 11 篇 中文
  • 1 篇 西班牙文
检索条件"机构=Department of Computer Science and Engineering MoE Key Lab of Artificial Intelligence"
964 条 记 录,以下是111-120 订阅
排序:
LinSATNet: The Positive Linear Satisfiability Neural Networks
arXiv
收藏 引用
arXiv 2024年
作者: Wang, Runzhong Zhang, Yunhao Guo, Ziao Chen, Tianyi Yang, Xiaokang Yan, Junchi Department of Computer Science and Engineering MoE Key Lab of Artificial Intelligence Shanghai Jiao Tong University China Shanghai AI Laboratory China
Encoding constraints into neural networks is attractive. This paper studies how to introduce the popular positive linear satisfiability to neural networks. We propose the first differentiable satisfiability layer base... 详细信息
来源: 评论
META-GUI: Towards Multi-modal Conversational Agents on Mobile GUI
META-GUI: Towards Multi-modal Conversational Agents on Mobil...
收藏 引用
2022 Conference on Empirical Methods in Natural Language Processing, EMNLP 2022
作者: Sun, Liangtai Chen, Xingyu Chen, Lu Dai, Tianle Zhu, Zichen Yu, Kai X-LANCE Lab Department of Computer Science and Engineering MoE Key Lab of Artificial Intelligence AI Institute Shanghai Jiao Tong University Shanghai Jiao Tong University Shanghai China
Task-oriented dialogue (TOD) systems have been widely used by mobile phone intelligent assistants to accomplish tasks such as calendar scheduling or hotel reservation. Current TOD systems usually focus on multi-turn t... 详细信息
来源: 评论
Reorder and then Parse, Fast and Accurate Discontinuous Constituency Parsing
Reorder and then Parse, Fast and Accurate Discontinuous Cons...
收藏 引用
2022 Conference on Empirical Methods in Natural Language Processing, EMNLP 2022
作者: Sun, Kailai Li, Zuchao Zhao, Hai Department of Computer Science and Engineering Shanghai Jiao Tong University China MoE Key Lab of Artificial Intelligence AI Institute Shanghai Jiao Tong University China School of Computer Science Wuhan University China
Discontinuous constituency parsing is still kept developing for its efficiency and accuracy are far behind its continuous counterparts. Motivated by the observation that a discontinuous constituent tree can be simply ... 详细信息
来源: 评论
STORYTTS: A HIGHLY EXPRESSIVE TEXT-TO-SPEECH DATASET WITH RICH TEXTUAL EXPRESSIVENESS ANNOTATIONS
arXiv
收藏 引用
arXiv 2024年
作者: Liu, Sen Guo, Yiwei Chen, Xie Yu, Kai MoE Key Lab of Artificial Intelligence AI Institute X-LANCE Lab Department of Computer Science and Engineering Shanghai Jiao Tong University Shanghai China
While acoustic expressiveness has long been studied in expressive text-to-speech (ETTS), the inherent expressiveness in text lacks sufficient attention, especially for ETTS of artistic works. In this paper, we introdu... 详细信息
来源: 评论
VoiceFlow: Efficient Text-To-Speech with Rectified Flow Matching
VoiceFlow: Efficient Text-To-Speech with Rectified Flow Matc...
收藏 引用
International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Yiwei Guo Chenpeng Du Ziyang Ma Xie Chen Kai Yu Department of Computer Science and Engineering X-LANCE Lab Shanghai Jiao Tong University Shanghai China MoE Key Lab of Artificial Intelligence AI Institute
Although diffusion models in text-to-speech have become a popular choice due to their strong generative ability, the intrinsic complexity of sampling from diffusion models harms their efficiency. Alternatively, we pro...
来源: 评论
Acoustic BPE for Speech Generation with Discrete Tokens
Acoustic BPE for Speech Generation with Discrete Tokens
收藏 引用
International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Feiyu Shen Yiwei Guo Chenpeng Du Xie Chen Kai Yu Department of Computer Science and Engineering MoE Key Lab of Artificial Intelligence AI Institute X-LANCE Lab Shanghai Jiao Tong University Shanghai China
Discrete audio tokens derived from self-supervised learning models have gained widespread usage in speech generation. However, current practice of directly utilizing audio tokens poses challenges for sequence modeling...
来源: 评论
A DETAILED AUDIO-TEXT DATA SIMULATION PIPELINE USING SINGLE-EVENT SOUNDS
arXiv
收藏 引用
arXiv 2024年
作者: Xu, Xuenan Xu, Xiaohang Xie, Zeyu Zhang, Pingyue Wu, Mengyue Yu, Kai MoE Key Lab of Artificial Intelligence AI Institute X-LANCE Lab Department of Computer Science and Engineering Shanghai Jiao Tong University Shanghai China
Recently, there has been an increasing focus on audio-text cross-modal learning. However, most of the existing audio-text datasets contain only simple descriptions of sound events. Compared with classification labels,... 详细信息
来源: 评论
Fast and High-Quality Auto-Regressive Speech Synthesis via Speculative Decoding
arXiv
收藏 引用
arXiv 2024年
作者: Li, Bohan Wang, Hankun Zhang, Situo Guo, Yiwei Yu, Kai MoE Key Lab of Artificial Intelligence AI Institute X-LANCE Lab Department of Computer Science and Engineering Shanghai Jiao Tong University Shanghai China
The auto-regressive (AR) architecture, exemplified by models such as GPT, is extensively utilized in modern Text-to-Speech (TTS) systems. However, it often leads to considerable inference delays, primarily due to the ... 详细信息
来源: 评论
SEF-VC: Speaker Embedding Free Zero-Shot Voice Conversion with Cross Attention
SEF-VC: Speaker Embedding Free Zero-Shot Voice Conversion wi...
收藏 引用
International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Junjie Li Yiwei Guo Xie Chen Kai Yu X-LANCE Lab Department of Computer Science and Engineering MoE Key Lab of Artificial Intelligence AI Institute Shanghai Jiao Tong University Shanghai China
Zero-shot voice conversion (VC) aims to transfer the source speaker timbre to arbitrary unseen target speaker timbre, while keeping the linguistic content unchanged. Although the voice of generated speech can be contr...
来源: 评论
A Detailed Audio-Text Data Simulation Pipeline Using Single-Event Sounds
A Detailed Audio-Text Data Simulation Pipeline Using Single-...
收藏 引用
International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Xuenan Xu Xiaohang Xu Zeyu Xie Pingyue Zhang Mengyue Wu Kai Yu Department of Computer Science and Engineering MoE Key Lab of Artificial Intelligence AI Institute X-LANCE Lab Shanghai Jiao Tong University Shanghai China
Recently, there has been an increasing focus on audio-text cross-modal learning. However, most of the existing audio-text datasets contain only simple descriptions of sound events. Compared with classification labels,...
来源: 评论