咨询与建议

限定检索结果

文献类型

  • 575 篇 期刊文献
  • 385 篇 会议
  • 4 册 图书

馆藏范围

  • 964 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 641 篇 工学
    • 511 篇 计算机科学与技术...
    • 444 篇 软件工程
    • 129 篇 信息与通信工程
    • 111 篇 生物工程
    • 68 篇 控制科学与工程
    • 67 篇 生物医学工程(可授...
    • 63 篇 光学工程
    • 47 篇 电气工程
    • 47 篇 电子科学与技术(可...
    • 38 篇 化学工程与技术
    • 27 篇 机械工程
    • 18 篇 仪器科学与技术
    • 17 篇 土木工程
    • 14 篇 材料科学与工程(可...
    • 14 篇 动力工程及工程热...
    • 13 篇 建筑学
  • 399 篇 理学
    • 177 篇 物理学
    • 163 篇 数学
    • 126 篇 生物学
    • 51 篇 统计学(可授理学、...
    • 40 篇 化学
    • 24 篇 系统科学
  • 158 篇 管理学
    • 93 篇 图书情报与档案管...
    • 71 篇 管理科学与工程(可...
    • 32 篇 工商管理
  • 53 篇 医学
    • 51 篇 临床医学
    • 40 篇 基础医学(可授医学...
    • 30 篇 药学(可授医学、理...
  • 22 篇 法学
    • 22 篇 社会学
  • 12 篇 经济学
    • 12 篇 应用经济学
  • 4 篇 教育学
  • 2 篇 农学
  • 1 篇 文学
  • 1 篇 军事学

主题

  • 35 篇 semantics
  • 30 篇 speech recogniti...
  • 29 篇 training
  • 27 篇 machine learning
  • 20 篇 signal processin...
  • 18 篇 embeddings
  • 16 篇 speech enhanceme...
  • 16 篇 computational mo...
  • 14 篇 object detection
  • 14 篇 reinforcement le...
  • 14 篇 artificial intel...
  • 13 篇 acoustics
  • 13 篇 decoding
  • 13 篇 adaptation model...
  • 12 篇 deep learning
  • 12 篇 speech processin...
  • 12 篇 computational li...
  • 11 篇 syntactics
  • 11 篇 predictive model...
  • 11 篇 feature extracti...

机构

  • 179 篇 moe key lab of a...
  • 147 篇 department of co...
  • 60 篇 key laboratory o...
  • 53 篇 moe key lab of a...
  • 44 篇 department of co...
  • 32 篇 department of co...
  • 30 篇 moe key lab of a...
  • 28 篇 department of co...
  • 28 篇 x-lance lab depa...
  • 23 篇 suzhou laborator...
  • 22 篇 x-lance lab depa...
  • 21 篇 shanghai jiao to...
  • 17 篇 key lab. of shan...
  • 15 篇 aispeech co. ltd...
  • 15 篇 shanghai jiao to...
  • 13 篇 moe key lab of a...
  • 12 篇 school of artifi...
  • 11 篇 department of el...
  • 11 篇 moe key lab of a...
  • 10 篇 school of artifi...

作者

  • 121 篇 yu kai
  • 96 篇 zhao hai
  • 68 篇 yan junchi
  • 63 篇 chen lu
  • 59 篇 qian yanmin
  • 41 篇 zhang zhuosheng
  • 38 篇 yanmin qian
  • 37 篇 chen xie
  • 34 篇 yang xiaokang
  • 33 篇 li zuchao
  • 32 篇 wu mengyue
  • 29 篇 zhu su
  • 28 篇 junchi yan
  • 25 篇 niu li
  • 22 篇 guo yiwei
  • 22 篇 gao xiaofeng
  • 21 篇 kai yu
  • 20 篇 zhang liqing
  • 18 篇 cao ruisheng
  • 18 篇 chen zhengyang

语言

  • 864 篇 英文
  • 89 篇 其他
  • 11 篇 中文
  • 1 篇 西班牙文
检索条件"机构=Department of Computer Science and Engineering MoE Key Lab of Artificial Intelligence"
964 条 记 录,以下是61-70 订阅
排序:
GoT: Effective Graph-of-Thought Reasoning in Language Models
GoT: Effective Graph-of-Thought Reasoning in Language Models
收藏 引用
2024 Findings of the Association for Computational Linguistics: NAACL 2024
作者: Yao, Yao Li, Zuchao Zhao, Hai Department of Computer Science and Engineering Shanghai Jiao Tong University China MoE Key Lab of Artificial Intelligence AI Institute Shanghai Jiao Tong University China National Engineering Research Center for Multimedia Software School of Computer Science Wuhan University Wuhan430072 China
With the widespread use of language models (LMs) in NLP tasks, researchers have discovered the potential of Chain-of-thought (CoT) to assist LMs in accomplishing complex reasoning tasks by generating intermediate step... 详细信息
来源: 评论
Neighborhood co-occurrence modeling in 3D point cloud segmentation
收藏 引用
Computational Visual Media 2022年 第2期8卷 303-315页
作者: Jingyu Gong Zhou Ye Lizhuang Ma Department of Computer Science and Engineering Shanghai Jiao Tong UniversityShanghai 200240China Shanghai CLS Fintech Co. LTDShanghai 200030China MoE Key Lab of Artificial Intelligence Shanghai Jiao Tong UniversityShanghai 200240China
A significant performance boost has been achieved in point cloud semantic segmentation by utilization of the encoder-decoder architecture and novel convolution operations for point ***,co-occurrence relationships with... 详细信息
来源: 评论
The Immense Impact of Reverse Edges on Large Hierarchical Networks
收藏 引用
engineering 2024年 第5期36卷 240-249页
作者: Haosen Cao Bin-Bin Hu Xiaoyu Mo Duxin Chen Jianxi Gao Ye Yuan Guanrong Chen Tamás Vicsek Xiaohong Guan Hai-Tao Zhang MOE Engineering Research Center of Autonomous Intelligent Unmanned Systems State Key Laboratory of Intelligent Manufacturing Equipment and TechnologySchool of Artificial Intelligence and AutomationHuazhong University of Science and TechnologyWuhan 430074China School of Mechanical and Aerospace Engineering Nanyang Technological UniversitySingapore 639798Singapore Jiangsu Key Laboratory of Networked Collective Intelligence School of MathematicsSoutheast UniversityNanjing 210096China Department of Computer Science Rensselaer Polytechnic InstituteTroyNY 12180USA Department of Electronic Engineering City University of Hong KongHong Kong 999077China Department of Biological Physics Eötvös UniversityBudapest 1117Hungary MOE Key Laboratory for Intelligent Networks and Network Security School of Automation Science and EngineeringXi’an Jiaotong UniversityXi’an 710049China
Hierarchical networks are frequently encountered in animal groups,gene networks,and artificial engineering systems such as multiple robots,unmanned vehicle systems,smart grids,wind farm networks,and so *** structure o... 详细信息
来源: 评论
Rethinking and improving robustness of convolutional neural networks: a shapley value-based approach in frequency domain  22
Rethinking and improving robustness of convolutional neural ...
收藏 引用
Proceedings of the 36th International Conference on Neural Information Processing Systems
作者: Yiting Chen Qibing Ren Junchi Yan Department of Computer Science and Engineering MoE Key Lab of Artificial Intelligence Shanghai Jiao Tong University
The existence of adversarial examples poses concerns for the robustness of convolutional neural networks (CNN), for which a popular hypothesis is about the frequency bias phenomenon: CNNs rely more on high-frequency c...
来源: 评论
Improving Speech Enhancement Using Audio Tagging Knowledge From Pre-Trained Representations and Multi-Task Learning
Improving Speech Enhancement Using Audio Tagging Knowledge F...
收藏 引用
2023 IEEE Automatic Speech Recognition and Understanding Workshop, ASRU 2023
作者: Lin, Shaoxiong Zhang, Chao Qian, Yanmin Tsinghua University Department of Electronic Engineering Beijing China Shanghai Jiao Tong University MoE Key Lab of Artificial Intelligence Ai Institute Department of Computer Science and Engineering Shanghai China Suzhou Institute of Artificial Intelligence Shanghai Jiao Tong University Suzhou215000 China
In deep-learning-based speech enhancement (SE), an audio-knowledge-ignorant approach is often used, which estimates a denoising model to transform the noisy input speech into clean output speech without understanding ... 详细信息
来源: 评论
CAM-GUI: A Conversational Assistant on Mobile GUI  18th
CAM-GUI: A Conversational Assistant on Mobile GUI
收藏 引用
18th National Conference on Man-Machine Speech Communication, NCMMSC 2023
作者: Zhu, Zichen Sun, Liangtai Yang, Jingkai Peng, Yifan Zou, Weilin Li, Ziyuan Li, Wutao Chen, Lu Ma, Yingzi Zhang, Danyang Fan, Shuai Yu, Kai X-LANCE Lab Department of Computer Science and Engineering MoE Key Lab of Artificial Intelligence SJTU AI Institute Shanghai Jiao Tong University Shanghai China Sichuan University Sichuan Chengdu China AISpeech Ltd. Suzhou China
Smartphone assistants are becoming more and more popular in our daily lives. These assistants mostly rely on the API-based Task-Oreiented Dialogue (TOD) systems, which limits the generality of these assistants, and th... 详细信息
来源: 评论
ExpoEv: Enhancing Social Recommendation Service with Social Exposure and Feature Evolution
ExpoEv: Enhancing Social Recommendation Service with Social ...
收藏 引用
2023 IEEE International Conference on Web Services, ICWS 2023
作者: Ma, Li Zheng, Zuowu Huang, Xiuqi Zhang, Zhaoxiang Gao, Xiaofeng Guo, Jianxiong Chen, Guihai Shanghai Jiao Tong University MoE Key Lab of Artificial Intelligence Department of Computer Science and Engineering Shanghai China Advanced Institute of Natural Sciences Beijing Normal University Zhuhai China
Social networks are widely recognized as highly effective information sources for social recommendation services. However, previous social recommendation methods assumed that a user's preference factor and social ... 详细信息
来源: 评论
Painterly Image Harmonization via Adversarial Residual Learning
Painterly Image Harmonization via Adversarial Residual Learn...
收藏 引用
IEEE Workshop on Applications of computer Vision (WACV)
作者: Xudong Wang Li Niu Junyan Cao Yan Hong Liqing Zhang Department of Computer Science and Engineering MoE Key Lab of Artificial Intelligence Shanghai Jiao Tong University
Image compositing plays a vital role in photo editing. After inserting a foreground object into another background image, the composite image may look unnatural and inharmonious. When the foreground is photorealistic ...
来源: 评论
A dry-electrode enabled ECG-on-Chip with arrhythmia-aware data transmission
收藏 引用
science China(Information sciences) 2025年 第2期68卷 338-353页
作者: Xinzi XU Yanxing SUO Yang ZHAO Peiyi ZHOU Xiao HAN Qiao CAI Min WANG Jiajun YUAN Liebin ZHAO Yongfu LI Guoxing WANG Yong LIAN Department of Micro-Nano Electronics and MoE Key Lab of Artificial Intelligence Shanghai Jiao Tong University Pediatric AI Clinical Application and Research Center Shanghai Engineering Research Center of Intelligence Pediatrics (SERCIP)Child Health Advocacy InstituteShanghai Children's Medical CenterSchool of MedicineShanghai Jiao Tong University Shanghai Engineering Research Center of Intelligence Pediatrics (SERCIP) Xin Hua Hospital Affiliate to Shanghai Jiao Tong University School of Medicine
Early detection and treatment of cardiovascular diseases(CVDs) can be significantly enhanced through the use of flexible wearable electrocardiogram(ECG) sensors, potentially reducing CVD-related mortality. This paper ... 详细信息
来源: 评论
A 5.3 pJ/Spike CMOS Neural Array Employing Time-Modulated Axon-Sharing and Background Mismatch Calibration Techniques
收藏 引用
IEEE Transactions on Biomedical Circuits and Systems 2023年 第2期17卷 286-298页
作者: Qi, Xiang'ao Zhao, Jian Lou, Yuqing Wang, Guoxing Tang, Kea-Tiong Li, Yongfu Shanghai Jiao Tong University Department of Micro-Nano Electronics The MoE Key Lab of Artificial Intelligence Shanghai200240 China National Tsing Hua University Electrical Engineering Hsinchu30013 Taiwan
Inspired by the human brain, spiking neuron networks are promising to realize energy-efficient and low-latency neuromorphic computing. However, even state-of-the-art silicon neurons are orders of magnitude worse than ... 详细信息
来源: 评论