Disastrous situations pose a formidable challenge, testing our resilience against nature's fury and the race against time to prevent the loss of human life. It is noted that in such situations that Microblogging p...
详细信息
Numerous neural network(NN)applications are now being deployed to mobile *** applications usually have large amounts of calculation and data while requiring low inference latency,which poses challenges to the computin...
详细信息
Numerous neural network(NN)applications are now being deployed to mobile *** applications usually have large amounts of calculation and data while requiring low inference latency,which poses challenges to the computing ability of mobile ***,devices’life and performance depend on ***,in many scenarios,such as industrial production and automotive systems,where the environmental temperatures are usually high,it is important to control devices’temperatures to maintain steady *** this paper,we propose a thermal-aware channel-wise heterogeneous NN inference *** contains two parts,the thermal-aware dynamic frequency(TADF)algorithm and the heterogeneous-processor single-layer workload distribution(HSWD)*** on a mobile device’s architecture characteristics and environmental temperature,TADF can adjust the appropriate running speed of the central processing unit and graphics processing unit,and then the workload of each layer in the NN model is distributed by HSWD in line with each processor’s running speed and the characteristics of the layers as well as heterogeneous *** experimental results,where representative NNs and mobile devices were used,show that the proposed method can considerably improve the speed of the on-device inference by 21%–43%over the traditional inference method.
People may now receive and share information more quickly and easily than ever due to the widespread use of mobile networked devices. However, this can occasionally lead to the spread of false information. Such inform...
详细信息
Internet of Things (IoT) enabled Wireless Sensor Networks (WSNs) is not only constitute an encouraging research domain but also represent a promising industrial trend that permits the development of various IoT-based ...
详细信息
Heads-up computing aims to provide synergistic digital assistance that minimally interferes with users' on-the-go daily activities. Currently, the input modalities of heads-up computing are mainly voice and finger...
详细信息
Dielectric capacitors,serving as the indispensable components in advanced high-power energy storage devices,have attracted ever-increasing attention with the rapid development of science and *** various dielectric cap...
详细信息
Dielectric capacitors,serving as the indispensable components in advanced high-power energy storage devices,have attracted ever-increasing attention with the rapid development of science and *** various dielectric capacitors,ceramic capacitors with perovskite structures show unique advantages in actual application,e.g.,excellent adaptability in high-temperature *** the optimization of their energy storage performance has become a hot research topic *** review presents the basic principles of energy storage in dielectric ceramics and introduces multi-scale synergic optimization strategies according to the key factors for superior energy storage *** summarizing the common points in numerous works,several universal modification strategies are reviewed,and future research on fatigue fracture of ceramic capacitors under multi-field including but not limited to force,electric,and thermal coupling conditions is also anticipated.
In the contemporary landscape, autonomous vehicles (AVs) have emerged as a prominent technological advancement globally. Despite their widespread adoption, significant hurdles remain, with security standing out as a c...
详细信息
Higher-order patterns reveal sequential multistep state transitions,which are usually superior to origin-destination analyses that depict only first-order geospatial movement *** methods for higher-order movement mode...
详细信息
Higher-order patterns reveal sequential multistep state transitions,which are usually superior to origin-destination analyses that depict only first-order geospatial movement *** methods for higher-order movement modeling first construct a directed acyclic graph(DAG)of movements and then extract higher-order patterns from the ***,DAG-based methods rely heavily on identifying movement keypoints,which are challenging for sparse movements and fail to consider the temporal variants critical for movements in urban *** overcome these limitations,we propose HoLens,a novel approach for modeling and visualizing higher-order movement patterns in the context of an urban *** mainly makes twofold contributions:First,we designed an auto-adaptive movement aggregation algorithm that self-organizes movements hierarchically by considering spatial proximity,contextual information,and tem-poral ***,we developed an interactive visual analytics interface comprising well-established visualization techniques,including the H-Flow for visualizing the higher-order patterns on the map and the higher-order state sequence chart for representing the higher-order state *** real-world case studies demonstrate that the method can adaptively aggregate data and exhibit the process of exploring higher-order patterns using *** also demonstrate the feasibility,usability,and effectiveness of our approach through expert interviews with three domain experts.
Cervical cell segmentation is a significant task in medical image analysis and can be used for screening various cervical diseases. In recent years, substantial progress has been made in cervical cell segmentation tec...
详细信息
The behavior of users on online life service platforms like Meituan and Yelp often occurs within specific finegrained spatiotemporal contexts(i.e., when and where). Recommender systems, designed to serve millions of u...
详细信息
The behavior of users on online life service platforms like Meituan and Yelp often occurs within specific finegrained spatiotemporal contexts(i.e., when and where). Recommender systems, designed to serve millions of users, typically operate in a fully server-based manner, requiring on-device users to upload their behavioral data, including fine-grained spatiotemporal contexts, to the server, which has sparked public concern regarding privacy. Consequently, user devices only upload coarse-grained spatiotemporal contexts for user privacy protection. However, previous research mostly focuses on modeling fine-grained spatiotemporal contexts using knowledge graph convolutional models, which are not applicable to coarse-grained spatiotemporal contexts in privacy-constrained recommender systems. In this paper, we investigate privacy-preserving recommendation by leveraging coarse-grained spatiotemporal contexts. We propose the coarse-grained spatiotemporal knowledge graph for privacy-preserving recommendation(CSKG), which explicitly models spatiotemporal co-occurrences using common-sense knowledge from coarse-grained contexts. Specifically, we begin by constructing a spatiotemporal knowledge graph tailored to coarse-grained spatiotemporal contexts. Then we employ a learnable metagraph network that integrates common-sense information to filter and extract co-occurrences. CSKG evaluates the impact of coarsegrained spatiotemporal contexts on user behavior through the use of a knowledge graph convolutional network. Finally, we introduce joint learning to effectively learn representations. By conducting experiments on two real large-scale datasets,we achieve an average improvement of about 11.0% on two ranking metrics. The results clearly demonstrate that CSKG outperforms state-of-the-art baselines.
暂无评论