The rapid evolution of wireless technologies and the growing complexity of network infrastructures necessitate a paradigm shift in how communication networks are designed,configured,and managed. Recent advancements in...
详细信息
The rapid evolution of wireless technologies and the growing complexity of network infrastructures necessitate a paradigm shift in how communication networks are designed,configured,and managed. Recent advancements in large language models (LLMs) have sparked interest in their potential to revolutionize wireless communication systems. However, existing studies on LLMs for wireless systems are limited to a direct application for telecom language understanding. To empower LLMs with knowledge and expertise in the wireless domain, this paper proposes WirelessLLM, a comprehensive framework for adapting and enhancing LLMs to address the unique challenges and requirements of wireless communication networks. We first identify three foundational principles that underpin WirelessLLM:knowledge alignment, knowledge fusion, and knowledge evolution. Then,we investigate the enabling technologies to build WirelessLLM, including prompt engineering, retrieval augmented generation, tool usage, multi-modal pre-training, and domain-specific fine-tuning. Moreover, we present three case studies to demonstrate the practical applicability and benefits of WirelessLLM for solving typical problems in wireless networks. Finally, we conclude this paper by highlighting key challenges and outlining potential avenues for future research.
In permissioned blockchain networks,the Proof of Authority(PoA)consensus,which uses the election of authorized nodes to validate transactions and blocks,has beenwidely advocated thanks to its high transaction throughp...
详细信息
In permissioned blockchain networks,the Proof of Authority(PoA)consensus,which uses the election of authorized nodes to validate transactions and blocks,has beenwidely advocated thanks to its high transaction throughput and fault ***,PoA suffers from the drawback of centralization dominated by a limited number of authorized nodes and the lack of anonymity due to the round-robin block proposal *** a result,traditional PoA is vulnerable to a single point of failure that compromises the security of the blockchain *** address these issues,we propose a novel decentralized reputation management mechanism for permissioned blockchain networks to enhance security,promote liveness,and mitigate centralization while retaining the same throughput as traditional *** paper aims to design an off-chain reputation evaluation and an on-chain reputation-aided ***,we evaluate the nodes’reputation in the context of the blockchain networks and make the reputation globally verifiable through smart ***,building upon traditional PoA,we propose a reputation-aided PoA(rPoA)consensus to enhance securitywithout sacrificing *** particular,rPoA can incentivize nodes to autonomously form committees based on reputation authority,which prevents block generation from being tracked through the randomness of reputation ***,we develop a reputation-aided fork-choice rule for rPoA to promote the network’s ***,experimental results show that the proposed rPoA achieves higher security performance while retaining transaction throughput compared to traditional PoA.
To improve the effectiveness of online learning, the learning materials recommendation is required to be personalised to the learner material recommendations must be personalized to learners. The existing approaches a...
详细信息
Agricultural production is critical to the economy. This is one of the reasons why disease detection in plants is so important in agricultural settings, as plant disease is rather common. Farmers are not engaged in in...
详细信息
Agricultural production is critical to the economy. This is one of the reasons why disease detection in plants is so important in agricultural settings, as plant disease is rather common. Farmers are not engaged in increasing their agricultural productivity daily since there are no technologies in the previous system to detect diseases in various crops in an agricultural environment. With the exponential population growth, food scarcity is a huge concern globally. In addition to this, the productivity of agricultural products has been highly impacted by the rapid increase in phytopathological adversities. The main challenges in leaf segmentation and plant disease identification are prior knowledge is required for segmentation, the implementation still lacks the accuracy of results, and more tweaking is required. To reduce the devastating impacts of illnesses on the economy, early detection of illnesses in plants is therefore essential. This paper describes an approach for segmenting and detecting plant leaf diseases based on images acquired via the Internet of Things (IoT) network. Here, a plant leaf area is segmented with a UNet, whose trainable parameters are optimized using the Mayfly Bald Eagle Optimization (MBEO) algorithm. Further, plant type classification is carried out by the Deep batch normalized AlexNet (DbneAlexNet), optimized by the Sine Cosine Algorithm-based Rider Neural Network (SCA-based RideNN). Finally, the DbneAlexNet, with weights adapted by the MBEO algorithm, is used to identify plant disease. The Plant Village dataset is used to evaluate the proposed DbneAlexNet-MBEO for plant-type classification and disease detection. The efficiency of the UNet-MBEO for segmentation is examined based on the Dice coefficient and Intersectin over Union (IOU) and has achieved superior values of 0.927 and 0.907. Moreover, the DbneAlexNet-MBEO is examined considering accuracy, Test Negative Rate (TNR), and Test Positive Rate (TPR) and offered superior values of 0
The concept of cryptocurrency is a significant advancement in digital currencies. “Cryptocurrency” refers to a form of electronic or virtual currency that is secured through the application of encryption. It is a co...
详细信息
Various organizations store data online rather than on physical *** the number of user’s data stored in cloud servers increases,the attack rate to access data from cloud servers also *** researchers worked on differe...
详细信息
Various organizations store data online rather than on physical *** the number of user’s data stored in cloud servers increases,the attack rate to access data from cloud servers also *** researchers worked on different algorithms to protect cloud data from replay *** of the papers used a technique that simultaneously detects a full-message and partial-message replay *** study presents the development of a TKN(Text,Key and Name)cryptographic algorithm aimed at protecting data from replay *** program employs distinct ways to encrypt plain text[P],a user-defined Key[K],and a Secret Code[N].The novelty of the TKN cryptographic algorithm is that the bit value of each text is linked to another value with the help of the proposed algorithm,and the length of the cipher text obtained is twice the length of the original *** the scenario that an attacker executes a replay attack on the cloud server,engages in cryptanalysis,or manipulates any data,it will result in automated modification of all associated values inside the *** mechanism has the benefit of enhancing the detectability of replay ***,the attacker cannot access data not included in any of the papers,regardless of how effective the attack strategy *** the end of paper,the proposed algorithm’s novelty will be compared with different algorithms,and it will be discussed how far the proposed algorithm is better than all other algorithms.
This article introduces a novel Multi-agent path planning scheme based on Conflict Based Search (CBS) for heterogeneous holonomic and non-holonomic agents, designated as Heterogeneous CBS (HCBS). The proposed methodol...
详细信息
The adaptability of cross-view ground-to-aerial localization to varying illumination is a prerequisite for robot systems to work day and night. The proposed multi-modality semantic-shared cross-view ground-to-aerial l...
详细信息
Tissue segmentation in histopathological images plays a crucial role in computational pathology, owing to its significant potential to indicate the prognosis of cancer patients. Presently, numerous Weakly Supervised S...
详细信息
To enable message transmission among sensors and equipment,power line communication(PLC)is a widely adopted smart ***,due to the occurrence of impulsive noise(IN),reliable transmissions over PLC channels in the smart ...
详细信息
To enable message transmission among sensors and equipment,power line communication(PLC)is a widely adopted smart ***,due to the occurrence of impulsive noise(IN),reliable transmissions over PLC channels in the smart grid are ***,in this paper,we propose an adaptive noise mitigation scheme to clip the IN with the sliding window-based method,where the altitude of the received signal in the current time slots is obtained by computing the average altitude of signals in the previous and next time *** detect the states of IN and dynamically estimate the power threshold of signals for the IN mitigation scheme,we develop an intelligent algorithm based on the long short-term memory *** prevent the useful signals from being eliminated as IN signals,we propose the accelerated proximal gradient method(APGM)based on tone reservation to reduce the peak-to-average power ratio(PAPR)for the transmitting signals with low computational *** addition,the closed-form expression of the bit error rate(BER)is derived for the proposed sliding window-based IN mitigation scheme according to the probability density function of the *** results demonstrate that the proposed IN mitigation scheme achieves a better BER performance than the conventional IN mitigation *** addition,the APGM aided by IN mitigation can further improve BER performance due to the PAPR reduction.
暂无评论