This study introduces a data-driven approach for state and output feedback control addressing the constrained output regulation problem in unknown linear discrete-time systems. Our method ensures effective tracking pe...
详细信息
This study introduces a data-driven approach for state and output feedback control addressing the constrained output regulation problem in unknown linear discrete-time systems. Our method ensures effective tracking performance while satisfying the state and input constraints, even when system matrices are not available. We first establish a sufficient condition necessary for the existence of a solution pair to the regulator equation and propose a data-based approach to obtain the feedforward and feedback control gains for state feedback control using linear programming. Furthermore, we design a refined Luenberger observer to accurately estimate the system state, while keeping the estimation error within a predefined set. By combining output regulation theory, we develop an output feedback control strategy. The stability of the closed-loop system is rigorously proved to be asymptotically stable by further leveraging the concept of λ-contractive sets.
High reliability applications in dense access scenarios have become one of the main goals of 6G *** solve the access collision of dense Machine Type Communication(MTC)devices in cell-free communication systems,an inte...
详细信息
High reliability applications in dense access scenarios have become one of the main goals of 6G *** solve the access collision of dense Machine Type Communication(MTC)devices in cell-free communication systems,an intelligent cooperative secure access scheme based on multi-agent reinforcement learning and federated learning is proposed,that is,the Preamble Slice Orderly Queue Access(PSOQA)*** this scheme,the preamble arrangement is combined with the access *** preamble arrangement is realized by preamble slices which is from the virtual preamble *** access devices learn to queue orderly by deep reinforcement *** orderly queue weakens the random and avoids collision.A preamble slice is assigned to an orderly access queue at each access *** orderly queue is determined by interaction information among multiple *** the federated reinforcement learning framework,the PSOQA scheme is implemented to guarantee the privacy and security of ***,the access performance of PSOQA is compared with other random contention schemes in different load *** results show that PSOQA can not only improve the access success rate but also guarantee low-latency tolerant performances.
Accurate and reliable wind power forecasting is of great importance for stable grid operation and advanced dispatch planning. Due to the complex, non-stationary, and highly volatile nature of wind power data, Transfor...
详细信息
Evolutionary algorithms have been extensively utilized in practical ***,manually designed population updating formulas are inherently prone to the subjective influence of the *** programming(GP),characterized by its t...
详细信息
Evolutionary algorithms have been extensively utilized in practical ***,manually designed population updating formulas are inherently prone to the subjective influence of the *** programming(GP),characterized by its tree-based solution structure,is a widely adopted technique for optimizing the structure of mathematical models tailored to real-world *** paper introduces a GP-based framework(GPEAs)for the autonomous generation of update formulas,aiming to reduce human *** modifications to tree-based GP have been instigated,encompassing adjustments to its initialization process and fundamental update operations such as crossover and mutation within the *** designing suitable function sets and terminal sets tailored to the selected evolutionary algorithm,and ultimately derive an improved update *** Cat Swarm Optimization Algorithm(CSO)is chosen as a case study,and the GP-EAs is employed to regenerate the speed update formulas of the *** validate the feasibility of the GP-EAs,the comprehensive performance of the enhanced algorithm(GP-CSO)was evaluated on the CEC2017 benchmark ***,GP-CSO is applied to deduce suitable embedding factors,thereby improving the robustness of the digital watermarking *** experimental results indicate that the update formulas generated through training with GP-EAs possess excellent performance scalability and practical application proficiency.
As a pivotal enabler of intelligent transportation system(ITS), Internet of vehicles(Io V) has aroused extensive attention from academia and industry. The exponential growth of computation-intensive, latency-sensitive...
详细信息
As a pivotal enabler of intelligent transportation system(ITS), Internet of vehicles(Io V) has aroused extensive attention from academia and industry. The exponential growth of computation-intensive, latency-sensitive,and privacy-aware vehicular applications in Io V result in the transformation from cloud computing to edge computing,which enables tasks to be offloaded to edge nodes(ENs) closer to vehicles for efficient execution. In ITS environment,however, due to dynamic and stochastic computation offloading requests, it is challenging to efficiently orchestrate offloading decisions for application requirements. How to accomplish complex computation offloading of vehicles while ensuring data privacy remains challenging. In this paper, we propose an intelligent computation offloading with privacy protection scheme, named COPP. In particular, an Advanced Encryption Standard-based encryption method is utilized to implement privacy protection. Furthermore, an online offloading scheme is proposed to find optimal offloading policies. Finally, experimental results demonstrate that COPP significantly outperforms benchmark schemes in the performance of both delay and energy consumption.
The self-cascade(SC) method is an effective technique for chaos enhancement and complexity increasing in chaos ***, the controllable self-cascade(CSC) method allows for more accurate control of Lyapunov exponents of t...
详细信息
The self-cascade(SC) method is an effective technique for chaos enhancement and complexity increasing in chaos ***, the controllable self-cascade(CSC) method allows for more accurate control of Lyapunov exponents of the discrete map. In this work, the SC and CSC systems of the original map are derived, which enhance the chaotic performance while preserving the fundamental dynamical characteristics of the original map. Higher Lyapunov exponent of chaotic sequences corresponding to higher frequency are obtained in SC and CSC systems. Meanwhile, the Lyapunov exponent could be linearly controlled with greater flexibility in the CSC system. The verification of the numerical simulation and theoretical analysis is carried out based on the platform of CH32.
Data augmentation plays a crucial role in enhancing the robustness and performance of machine learning models across various domains. In this study, we introduce a novel mixed-sample data augmentation method called Ra...
详细信息
Background: Collaborative Representation (CR) has been widely used in Single Image Super Resolution (SISR) with the assumption that Low-resolution (LR) and high-resolution (HR) features can be linearly represented by ...
详细信息
Recommender systems are effective in mitigating information overload, yet the centralized storage of user data raises significant privacy concerns. Cross-user federated recommendation(CUFR) provides a promising distri...
详细信息
Recommender systems are effective in mitigating information overload, yet the centralized storage of user data raises significant privacy concerns. Cross-user federated recommendation(CUFR) provides a promising distributed paradigm to address these concerns by enabling privacy-preserving recommendations directly on user devices. In this survey, we review and categorize current progress in CUFR, focusing on four key aspects: privacy, security, accuracy, and efficiency. Firstly,we conduct an in-depth privacy analysis, discuss various cases of privacy leakage, and then review recent methods for privacy protection. Secondly, we analyze security concerns and review recent methods for untargeted and targeted *** untargeted attack methods, we categorize them into data poisoning attack methods and parameter poisoning attack methods. For targeted attack methods, we categorize them into user-based methods and item-based methods. Thirdly,we provide an overview of the federated variants of some representative methods, and then review the recent methods for improving accuracy from two categories: data heterogeneity and high-order information. Fourthly, we review recent methods for improving training efficiency from two categories: client sampling and model compression. Finally, we conclude this survey and explore some potential future research topics in CUFR.
Traffic encryption techniques facilitate cyberattackers to hide their presence and *** classification is an important method to prevent network ***,due to the tremendous traffic volume and limitations of computing,mos...
详细信息
Traffic encryption techniques facilitate cyberattackers to hide their presence and *** classification is an important method to prevent network ***,due to the tremendous traffic volume and limitations of computing,most existing traffic classification techniques are inapplicable to the high-speed network *** this paper,we propose a High-speed Encrypted Traffic Classification(HETC)method containing two ***,to efficiently detect whether traffic is encrypted,HETC focuses on randomly sampled short flows and extracts aggregation entropies with chi-square test features to measure the different patterns of the byte composition and distribution between encrypted and unencrypted ***,HETC introduces binary features upon the previous features and performs fine-grained traffic classification by combining these payload features with a Random Forest *** experimental results show that HETC can achieve a 94%F-measure in detecting encrypted flows and a 85%–93%F-measure in classifying fine-grained flows for a 1-KB flow-length dataset,outperforming the state-of-the-art comparison ***,HETC does not need to wait for the end of the flow and can extract mass computing *** average time for HETC to process each flow is only 2 or 16 ms,which is lower than the flow duration in most cases,making it a good candidate for high-speed traffic classification.
暂无评论