The segmentation of head and neck(H&N)tumors in dual Positron Emission Tomography/Computed Tomogra-phy(PET/CT)imaging is a critical task in medical imaging,providing essential information for diagnosis,treatment p...
详细信息
The segmentation of head and neck(H&N)tumors in dual Positron Emission Tomography/Computed Tomogra-phy(PET/CT)imaging is a critical task in medical imaging,providing essential information for diagnosis,treatment planning,and outcome *** by the need for more accurate and robust segmentation methods,this study addresses key research gaps in the application of deep learning techniques to multimodal medical ***,it investigates the limitations of existing 2D and 3D models in capturing complex tumor structures and proposes an innovative 2.5D UNet Transformer model as a *** primary research questions guiding this study are:(1)How can the integration of convolutional neural networks(CNNs)and transformer networks enhance segmentation accuracy in dual PET/CT imaging?(2)What are the comparative advantages of 2D,2.5D,and 3D model configurations in this context?To answer these questions,we aimed to develop and evaluate advanced deep-learning models that leverage the strengths of both CNNs and *** proposed methodology involved a comprehensive preprocessing pipeline,including normalization,contrast enhancement,and resampling,followed by segmentation using 2D,2.5D,and 3D UNet Transformer *** models were trained and tested on three diverse datasets:HeckTor2022,AutoPET2023,and *** was assessed using metrics such as Dice Similarity Coefficient,Jaccard Index,Average Surface Distance(ASD),and Relative Absolute Volume Difference(RAVD).The findings demonstrate that the 2.5D UNet Transformer model consistently outperformed the 2D and 3D models across most metrics,achieving the highest Dice and Jaccard values,indicating superior segmentation *** instance,on the HeckTor2022 dataset,the 2.5D model achieved a Dice score of 81.777 and a Jaccard index of 0.705,surpassing other model *** 3D model showed strong boundary delineation performance but exhibited variability across datasets,while the
Despite the effectiveness of vision-language supervised fine-tuning in enhancing the performance of vision large language models(VLLMs), existing visual instruction tuning datasets include the following limitations.(1...
详细信息
Despite the effectiveness of vision-language supervised fine-tuning in enhancing the performance of vision large language models(VLLMs), existing visual instruction tuning datasets include the following limitations.(1) Instruction annotation quality: despite existing VLLMs exhibiting strong performance,instructions generated by those advanced VLLMs may still suffer from inaccuracies, such as hallucinations.(2) Instructions and image diversity: the limited range of instruction types and the lack of diversity in image data may impact the model's ability to generate diversified and closer to real-world scenarios outputs. To address these challenges, we construct a high-quality, diverse visual instruction tuning dataset MMInstruct,which consists of 973k instructions from 24 domains. There are four instruction types: judgment, multiplechoice, long visual question answering, and short visual question answering. To construct MMInstruct, we propose an instruction generation data engine that leverages GPT-4V, GPT-3.5, and manual correction. Our instruction generation engine enables semi-automatic, low-cost, and multi-domain instruction generation at 1/6 the cost of manual construction. Through extensive experiment validation and ablation experiments,we demonstrate that MMInstruct could significantly improve the performance of VLLMs, e.g., the model fine-tuning on MMInstruct achieves new state-of-the-art performance on 10 out of 12 benchmarks. The code and data shall be available at https://***/yuecao0119/MMInstruct.
With the emergence of smartness in various fields including medical science, forensics and security, remote monitoring of human activities has gained more interests in research. The ambulatory health monitoring servic...
详细信息
ASR is an effectual approach, which converts human speech into computer actions or text format. It involves extracting and determining the noise feature, the audio model, and the language model. The extraction and det...
详细信息
Learning network dynamics from the empirical structure and spatio-temporal observation data is crucial to revealing the interaction mechanisms of complex networks in a wide range of domains. However,most existing meth...
详细信息
Learning network dynamics from the empirical structure and spatio-temporal observation data is crucial to revealing the interaction mechanisms of complex networks in a wide range of domains. However,most existing methods only aim at learning network dynamic behaviors generated by a specific ordinary differential equation instance, resulting in ineffectiveness for new ones, and generally require dense *** observed data, especially from network emerging dynamics, are usually difficult to obtain, which brings trouble to model learning. Therefore, learning accurate network dynamics with sparse, irregularly-sampled,partial, and noisy observations remains a fundamental challenge. We introduce a new concept of the stochastic skeleton and its neural implementation, i.e., neural ODE processes for network dynamics(NDP4ND), a new class of stochastic processes governed by stochastic data-adaptive network dynamics, to overcome the challenge and learn continuous network dynamics from scarce observations. Intensive experiments conducted on various network dynamics in ecological population evolution, phototaxis movement, brain activity, epidemic spreading, and real-world empirical systems, demonstrate that the proposed method has excellent data adaptability and computational efficiency, and can adapt to unseen network emerging dynamics, producing accurate interpolation and extrapolation with reducing the ratio of required observation data to only about 6% and improving the learning speed for new dynamics by three orders of magnitude.
The movie recommender system is a highly influential and practical tool that assists individuals in efficiently choosing films to watch. Although recommender systems have been extensively used in academic research for...
详细信息
We consider the online convex optimization (OCO) problem with quadratic and linear switching cost when at time t only gradient information for functions fτ, τ 16(Lµ+5) for the quadratic switching cost, and also...
详细信息
We consider the online convex optimization (OCO) problem with quadratic and linear switching cost when at time t only gradient information for functions fτ, τ 16(Lµ+5) for the quadratic switching cost, and also show the bound to be order-wise tight in terms of L, µ. In addition, we show that the competitive ratio of any online algorithm is at least max{Ω(L), Ω(pLµ )} when the switching cost is quadratic. For the linear switching cost, the competitive ratio of the OMGD algorithm is shown to depend on both the path length and the squared path length of the problem instance, in addition to L, µ, and is shown to be order-wise, the best competitive ratio any online algorithm can achieve. Copyright is held by author/owner(s).
IoT-based healthcare (HC) systems face security and efficiency challenges. Existing solutions, such as secure transmission models, enhanced security protocols, and secure frameworks, neglect patient authentication and...
详细信息
The ability to learn incrementally is critical to the long-term operation of AI systems. Benefiting from the power of few-shot class-incremental learning(FSCIL), deep learning models can continuously recognize new cla...
详细信息
The ability to learn incrementally is critical to the long-term operation of AI systems. Benefiting from the power of few-shot class-incremental learning(FSCIL), deep learning models can continuously recognize new classes with only a few samples. The difficulty is that limited instances of new classes will lead to overfitting and exacerbate the catastrophic forgetting of the old classes. Most previous works alleviate the above problems by imposing strong constraints on the model structure or parameters, but ignoring embedding network transferability and classifier adaptation(CA), failing to guarantee the efficient utilization of visual features and establishing relationships between old and new classes. In this paper, we propose a simple and novel approach from two perspectives: embedding bias and classifier bias. The method learns an embedding augmented(EA) network with cross-class transfer and class-specific discriminative abilities based on self-supervised learning and modulated attention to alleviate embedding bias. Based on the adaptive incremental classifier learning scheme to realize incremental learning capability,guiding the adaptive update of prototypes and feature embeddings to alleviate classifier bias. We conduct extensive experiments on two popular natural image datasets and two medical datasets. The experiments show that our method is significantly better than the baseline and achieves state-of-the-art results.
The primary objective of fog computing is to minimize the reliance of IoT devices on the cloud by leveraging the resources of fog network. Typically, IoT devices offload computation tasks to fog to meet different task...
详细信息
The primary objective of fog computing is to minimize the reliance of IoT devices on the cloud by leveraging the resources of fog network. Typically, IoT devices offload computation tasks to fog to meet different task requirements such as latency in task execution, computation costs, etc. So, selecting such a fog node that meets task requirements is a crucial challenge. To choose an optimal fog node, access to each node's resource availability information is essential. Existing approaches often assume state availability or depend on a subset of state information to design mechanisms tailored to different task requirements. In this paper, OptiFog: a cluster-based fog computing architecture for acquiring the state information followed by optimal fog node selection and task offloading mechanism is proposed. Additionally, a continuous time Markov chain based stochastic model for predicting the resource availability on fog nodes is proposed. This model prevents the need to frequently synchronize the resource availability status of fog nodes, and allows to maintain an updated state information. Extensive simulation results show that OptiFog lowers task execution latency considerably, and schedules almost all the tasks at the fog layer compared to the existing state-of-the-art. IEEE
暂无评论