The proposed project addresses the critical issue of driver drowsiness, which is a major cause of accidents on the road. The system utilizes advanced technology, including video image analysis and pressure sensing, to...
详细信息
Social media is nowadays a vital platform where people can share their feelings about any incident, product, or any issue. Twitter is one of those platforms which are very popular. If we must make use of this to extra...
详细信息
Accurate prediction of above ground biomass (AGB) is critical for monitoring forest health and carbon cycling. It is crucial for understanding and managing forest ecosystems. In this paper, we propose an enhanced fram...
详细信息
Scalability and information personal privacy are vital for training and deploying large-scale deep learning *** learning trains models on exclusive information by aggregating weights from various devices and taking ad...
详细信息
Scalability and information personal privacy are vital for training and deploying large-scale deep learning *** learning trains models on exclusive information by aggregating weights from various devices and taking advantage of the device-agnostic environment of web ***,relying on a main central server for internet browser-based federated systems can prohibit scalability and interfere with the training process as a result of growing client ***,information relating to the training dataset can possibly be extracted from the distributed weights,potentially reducing the privacy of the local data used for *** this research paper,we aim to investigate the challenges of scalability and data privacy to increase the efficiency of distributed training *** a result,we propose a web-federated learning exchange(WebFLex)framework,which intends to improve the decentralization of the federated learning *** is additionally developed to secure distributed and scalable federated learning systems that operate in web browsers across heterogeneous ***,WebFLex utilizes peer-to-peer interactions and secure weight exchanges utilizing browser-to-browser web real-time communication(WebRTC),efficiently preventing the need for a main central *** has actually been measured in various setups using the MNIST *** results show WebFLex’s ability to improve the scalability of federated learning systems,allowing a smooth increase in the number of participating devices without central data *** addition,WebFLex can maintain a durable federated learning procedure even when faced with device disconnections and network ***,it improves data privacy by utilizing artificial noise,which accomplishes an appropriate balance between accuracy and privacy preservation.
Thyroid nodules,a common disorder in the endocrine system,require accurate segmentation in ultrasound images for effective diagnosis and ***,achieving precise segmentation remains a challenge due to various factors,in...
详细信息
Thyroid nodules,a common disorder in the endocrine system,require accurate segmentation in ultrasound images for effective diagnosis and ***,achieving precise segmentation remains a challenge due to various factors,including scattering noise,low contrast,and limited resolution in ultrasound *** existing segmentation models have made progress,they still suffer from several limitations,such as high error rates,low generalizability,overfitting,limited feature learning capability,*** address these challenges,this paper proposes a Multi-level Relation Transformer-based U-Net(MLRT-UNet)to improve thyroid nodule *** MLRTUNet leverages a novel Relation Transformer,which processes images at multiple scales,overcoming the limitations of traditional encoding *** transformer integrates both local and global features effectively through selfattention and cross-attention units,capturing intricate relationships within the *** approach also introduces a Co-operative Transformer Fusion(CTF)module to combine multi-scale features from different encoding layers,enhancing the model’s ability to capture complex patterns in the ***,the Relation Transformer block enhances long-distance dependencies during the decoding process,improving segmentation *** results showthat the MLRT-UNet achieves high segmentation accuracy,reaching 98.2% on the Digital Database Thyroid Image(DDT)dataset,97.8% on the Thyroid Nodule 3493(TG3K)dataset,and 98.2% on the Thyroid Nodule3K(TN3K)*** findings demonstrate that the proposed method significantly enhances the accuracy of thyroid nodule segmentation,addressing the limitations of existing models.
Stress has a remarkable impact on various cognitive functions, demanding timely and effective detection using strategies deployed across interdisciplinary domains. It influences decision-making, attention, learning, a...
详细信息
Stress has a remarkable impact on various cognitive functions, demanding timely and effective detection using strategies deployed across interdisciplinary domains. It influences decision-making, attention, learning, and problem-solving abilities. As a result, stress detection and modeling have become important areas of study in both psychology and computerscience. This study links the fields of psychology and machine learning to deal with the urgent requirement of accurate stress detection methodologies and highlights sleep patterns as a key indicator for stress detection, discussing a novel approach to understand and determine stress levels. Psychologists use affective states to measure stress, which refers to a sense of feeling an underlying emotional state. However, most stress classification work has been limited to user-dependent models, which new users cannot use without additional training. This can be a significant time burden for new users trying to predict their affective states. Therefore, it is critical to address basic mental health issues in children and adults to prevent them from developing more complex problems on account of undergoing stress. The medical field processes vast amounts of medical data;the machine learning algorithms sift through patterns that might escape the human eye. The machine learning algorithms act as detectives, able to spot correlations and bring out a sense of complex information. The machine learning algorithms reveal fine correlations and patterns, aiding in more precise and prompt diagnoses particularly to focus fundamental mental health issues in individuals of all ages. This research work deploys an enhanced Multilayer Perceptron (MLP), exhibiting an extensive feature analysis for processing medical datasets, resulting in improved effectiveness in predicting stress levels. This helps us to diagnose issues more accurately and swiftly which improves the patient outcomes. The proposed and enhanced MLP model undergoes stri
Acute Bilirubin Encephalopathy(ABE)is a significant threat to neonates and it leads to disability and high mortality *** and treating ABE promptly is important to prevent further complications and long-term *** studie...
详细信息
Acute Bilirubin Encephalopathy(ABE)is a significant threat to neonates and it leads to disability and high mortality *** and treating ABE promptly is important to prevent further complications and long-term *** studies have explored ABE ***,they often face limitations in classification due to reliance on a single modality of Magnetic Resonance Imaging(MRI).To tackle this problem,the authors propose a Tri-M2MT model for precise ABE detection by using tri-modality MRI *** scans include T1-weighted imaging(T1WI),T2-weighted imaging(T2WI),and apparent diffusion coefficient maps to get indepth ***,the tri-modality MRI scans are collected and preprocessesed by using an Advanced Gaussian Filter for noise reduction and Z-score normalisation for data *** Advanced Capsule Network was utilised to extract relevant features by using Snake Optimization Algorithm to select optimal features based on feature correlation with the aim of minimising complexity and enhancing detection ***,a multi-transformer approach was used for feature fusion and identify feature correlations ***,accurate ABE diagnosis is achieved through the utilisation of a SoftMax *** performance of the proposed Tri-M2MT model is evaluated across various metrics,including accuracy,specificity,sensitivity,F1-score,and ROC curve analysis,and the proposed methodology provides better performance compared to existing methodologies.
Social media is a digital environment where users openly share their opinions and engage in debates and discussions on various topics. Social media has amassed an enormous quantity of accessible data due to its consta...
详细信息
Data collection using mobile sink(s) has proven to reduce energy consumption and enhance the network lifetime of wireless sensor networks. Generally speaking, a mobile sink (MS) traverses the network region, sojournin...
详细信息
Finding and organizing suitable candidates for a vacant job position can pose challenges, especially when there is a high volume of submissions. This can impede team growth as it becomes challenging to identify the mo...
详细信息
暂无评论