This research paper delves into the intersection of advanced technology and military strategies, specifically focusing on the imperative task of camouflaged object detection within the Indian Paramilitary forces. Leve...
详细信息
In recent years due to increase in the number of customers and organizations utilize cloud applications for personal and professionalization become greater. As a result of this increase in utilizing the Cloud services...
详细信息
In an era characterized by pervasive interconnectivity, Internet of Things (IoT) devices have revolutionized automation, facilitating seamless data exchange. However, this technological leap has triggered heightened c...
详细信息
Internet of Things(IoT)is the most widespread and fastest growing technology *** to the increasing of IoT devices connected to the Internet,the IoT is the most technology under security *** IoT devices are not designe...
详细信息
Internet of Things(IoT)is the most widespread and fastest growing technology *** to the increasing of IoT devices connected to the Internet,the IoT is the most technology under security *** IoT devices are not designed with security because they are resource constrained ***,having an accurate IoT security system to detect security attacks is *** Detection Systems(IDSs)using machine learning and deep learning techniques can detect security attacks *** paper develops an IDS architecture based on Convolutional Neural Network(CNN)and Long Short-Term Memory(LSTM)deep learning *** implement our model on the UNSW-NB15 dataset which is a new network intrusion dataset that cate-gorizes the network traffic into normal and attacks *** this work,interpolation data preprocessing is used to compute the missing ***,the imbalanced data problem is solved using a synthetic data generation *** experiments have been implemented to compare the performance results of the proposed model(CNN+LSTM)with a basic model(CNN only)using both balanced and imbalanced ***,with some state-of-the-art machine learning classifiers(Decision Tree(DT)and Random Forest(RF))using both balanced and imbalanced *** results proved the impact of the balancing *** proposed hybrid model with the balance technique can classify the traffic into normal class and attack class with reasonable accuracy(92.10%)compared with the basic CNN model(89.90%)and the machine learning(DT 88.57%and RF 90.85%)***,comparing the proposed model results with the most related works shows that the proposed model gives good results compared with the related works that used the balance techniques.
The increase in the Distributed Denial of Service attack (DDoS) leads to a significant threat to the network security. Inability to timely and accurately detect DDoS attacks disrupts services offered by companies and ...
详细信息
In an era dominated by information dissemination through various channels like newspapers,social media,radio,and television,the surge in content production,especially on social platforms,has amplified the challenge of...
详细信息
In an era dominated by information dissemination through various channels like newspapers,social media,radio,and television,the surge in content production,especially on social platforms,has amplified the challenge of distinguishing between truthful and deceptive *** news,a prevalent issue,particularly on social media,complicates the assessment of news *** pervasive spread of fake news not only misleads the public but also erodes trust in legitimate news sources,creating confusion and polarizing *** the volume of information grows,individuals increasingly struggle to discern credible content from false narratives,leading to widespread misinformation and potentially harmful *** numerous methodologies proposed for fake news detection,including knowledge-based,language-based,and machine-learning approaches,their efficacy often diminishes when confronted with high-dimensional datasets and data riddled with noise or *** study addresses this challenge by evaluating the synergistic benefits of combining feature extraction and feature selection techniques in fake news *** employ multiple feature extraction methods,including Count Vectorizer,Bag of Words,Global Vectors for Word Representation(GloVe),Word to Vector(Word2Vec),and Term Frequency-Inverse Document Frequency(TF-IDF),alongside feature selection techniques such as Information Gain,Chi-Square,Principal Component Analysis(PCA),and Document *** comprehensive approach enhances the model’s ability to identify and analyze relevant features,leading to more accurate and effective fake news *** findings highlight the importance of a multi-faceted approach,offering a significant improvement in model accuracy and ***,the study emphasizes the adaptability of the proposed ensemble model across diverse datasets,reinforcing its potential for broader application in real-world *** introduce a pioneering ensemble
Lumpy skin disease (LSD) is a skin infection caused by the lumpy skin disease virus, which belongs to the genus of Capripoxviruses. The disease transmitted by arthropod vectors has high morbidity and low mortality rat...
详细信息
Deep learning, a branch of artificial intelligence, has drawn interest from the academic and corporate realms, especially in areas like speech and image analysis, video processing, and natural language processing. Its...
详细信息
In this work, we introduce a class of black-box(BB) reductions called committed-programming reduction(CPRed) in the random oracle model(ROM) and obtain the following interesting results:(1) we demonstrate that some we...
详细信息
In this work, we introduce a class of black-box(BB) reductions called committed-programming reduction(CPRed) in the random oracle model(ROM) and obtain the following interesting results:(1) we demonstrate that some well-known schemes, including the full-domain hash(FDH) signature(Eurocrypt1996) and the Boneh-Franklin identity-based encryption(IBE) scheme(Crypto 2001), are provably secure under CPReds;(2) we prove that a CPRed associated with an instance-extraction algorithm implies a reduction in the quantum ROM(QROM). This unifies several recent results, including the security of the Gentry-Peikert-Vaikuntanathan IBE scheme by Zhandry(Crypto 2012) and the key encapsulation mechanism(KEM) variants using the Fujisaki-Okamoto transform by Jiang et al.(Crypto 2018) in the ***, we show that CPReds are incomparable to non-programming reductions(NPReds) and randomly-programming reductions(RPReds) formalized by Fischlin et al.(Asiacrypt 2010).
The research combines Deep Q-Learning(DQN) with a Mininet-based network simulation and Scapy intrusions detection system (IDS) for malicious traffic prioritizing. The RL agent continuously learns to act based on real-...
详细信息
暂无评论