It is not easy to reduce the metal artifacts of computed tomography images. However, the pixel values inside the metal artifact regions vary smoothly, while those on the borders of the metal and the bone regions vary ...
详细信息
Detecting oriented targets in remote sensing images amidst complex and heterogeneous backgrounds remains a formidable challenge in the field of object *** frameworks for oriented detection modules are constrained by i...
详细信息
Detecting oriented targets in remote sensing images amidst complex and heterogeneous backgrounds remains a formidable challenge in the field of object *** frameworks for oriented detection modules are constrained by intrinsic limitations,including excessive computational and memory overheads,discrepancies between predefined anchors and ground truth bounding boxes,intricate training processes,and feature alignment *** overcome these challenges,we present ASL-OOD(Angle-based SIOU Loss for Oriented Object Detection),a novel,efficient,and robust one-stage framework tailored for oriented object *** ASL-OOD framework comprises three core components:the Transformer-based Backbone(TB),the Transformer-based Neck(TN),and the Angle-SIOU(Scylla Intersection over Union)based Decoupled Head(ASDH).By leveraging the Swin Transformer,the TB and TN modules offer several key advantages,such as the capacity to model long-range dependencies,preserve high-resolution feature representations,seamlessly integrate multi-scale features,and enhance parameter *** improvements empower the model to accurately detect objects across varying *** ASDH module further enhances detection performance by incorporating angle-aware optimization based on SIOU,ensuring precise angular consistency and bounding box *** approach effectively harmonizes shape loss and distance loss during the optimization process,thereby significantly boosting detection *** evaluations and ablation studies on standard benchmark datasets such as DOTA with an mAP(mean Average Precision)of 80.16 percent,HRSC2016 with an mAP of 91.07 percent,MAR20 with an mAP of 85.45 percent,and UAVDT with an mAP of 39.7 percent demonstrate the clear superiority of ASL-OOD over state-of-the-art oriented object detection *** findings underscore the model’s efficacy as an advanced solution for challenging remote sensing object detection tasks.
Malaria, a significant global health threat, is traditionally diagnosed through manual examination of blood smears for parasite-infected cells, a method limited by its reliance on the examiner’s expertise. To overcom...
详细信息
Recently, Rumor Spreading over Online Social Media is found as one of the serious issue, which causes severe damage to society, organization and individuals. To control the rumor spread, rumor detection is found as on...
详细信息
The ongoing Israel-Palestine conflict has triggered intense discussions on various social media platforms, reflecting the diverse perspectives and sentiments of users worldwide. In this study, we present a comprehensi...
详细信息
作者:
Raut, YashasviChaudhri, Shiv Nath
Faculty of Engineering and Technology Department of Computer Science and Engineering Maharashtra India
Gas/odor sensors are integral components of sensor systems used in diverse applications such as food quality control, environmental monitoring, medical diagnostics, odor profiling, industrial safety, agriculture, expl...
详细信息
Irrigation plays a significant role in various agricultural cropping methods deployed in semiarid and arid regions where valuable water applications and managing are considered crucial *** factors such as weather,soil...
详细信息
Irrigation plays a significant role in various agricultural cropping methods deployed in semiarid and arid regions where valuable water applications and managing are considered crucial *** factors such as weather,soil,water,and crop data need to be considered for irrigation maintenance in an efficient besides uniform manner from multifaceted and different information-based systems.A Multi-Agent System(MAS)has been proposed recently based on diverse agent subsystems with definite objectives for attaining global MAS objective and is deployed on Cloud Computing paradigm capable of gathering information from Wireless Sensor Networks(WSNs)positioned in rice,cotton,cassava crops for knowledge discovery and decision *** radial basis function network has been used for irrigation ***,in recent work,the security of data has not focused on where intruder involvement might corrupt the data at the time of data transferring to the cloud,which would affect the accuracy of decision *** handle the above mentioned issues,an efficient method for irrigation prediction is used in this *** factors considered for decision making are soil moisture,temperature,plant height,root *** above-mentioned data will be gathered from the sensors that are attached to the *** data will be forwarded to the local server,where data encryption will be performed using Adaptive Elliptic Curve Cryptography(AECC).After the encryption process,the data will be forwarded to the *** the data stored in the cloud will be decrypted key before being given to the deci-sion-making ***,the uniform distribution-based fuzzy neural network is formulated based on the received data information in the decisionmaking *** decision regarding the level of water required for cropfields would be *** on this outcome,the water volve opening duration and the level of fertilizers required will be *** results demons
In foggy traffic scenarios, existing object detection algorithms face challenges such as low detection accuracy, poor robustness, occlusion, missed detections, and false detections. To address this issue, a multi-scal...
详细信息
In foggy traffic scenarios, existing object detection algorithms face challenges such as low detection accuracy, poor robustness, occlusion, missed detections, and false detections. To address this issue, a multi-scale object detection algorithm based on an improved YOLOv8 has been proposed. Firstly, a lightweight attention mechanism, Triplet Attention, is introduced to enhance the algorithm’s ability to extract multi-dimensional and multi-scale features, thereby improving the receptive capability of the feature maps. Secondly, the Diverse Branch Block (DBB) is integrated into the CSP Bottleneck with two Convolutions (C2F) module to strengthen the fusion of semantic information across different layers. Thirdly, a new decoupled detection head is proposed by redesigning the original network head based on the Diverse Branch Block module to improve detection accuracy and reduce missed and false detections. Finally, the Minimum Point Distance based Intersection-over-Union (MPDIoU) is used to replace the original YOLOv8 Complete Intersection-over-Union (CIoU) to accelerate the network’s training convergence. Comparative experiments and dehazing pre-processing tests were conducted on the RTTS and VOC-Fog datasets. Compared to the baseline YOLOv8 model, the improved algorithm achieved mean Average Precision (mAP) improvements of 4.6% and 3.8%, respectively. After defogging pre-processing, the mAP increased by 5.3% and 4.4%, respectively. The experimental results demonstrate that the improved algorithm exhibits high practicality and effectiveness in foggy traffic scenarios.
This conference paper aims to create an innovative rental platform, acts as a bridge between users and providers. This platform transforms the rental landscape, offering a secure environment for seamless transactions ...
详细信息
This research work explores the effects of dry, liquid N2-based cryogenic cooling and cryogenic plus MQL hybrid strategy on surface roughness, rake surface temperature, principal cutting-edge temperature, auxiliary cu...
详细信息
暂无评论