Cancer remains a leading cause of mortality worldwide, with early detection and accurate diagnosis critical to improving patient outcomes. While computer-aided diagnosis systems powered by deep learning have shown con...
详细信息
High reliability applications in dense access scenarios have become one of the main goals of 6G *** solve the access collision of dense Machine Type Communication(MTC)devices in cell-free communication systems,an inte...
详细信息
High reliability applications in dense access scenarios have become one of the main goals of 6G *** solve the access collision of dense Machine Type Communication(MTC)devices in cell-free communication systems,an intelligent cooperative secure access scheme based on multi-agent reinforcement learning and federated learning is proposed,that is,the Preamble Slice Orderly Queue Access(PSOQA)*** this scheme,the preamble arrangement is combined with the access *** preamble arrangement is realized by preamble slices which is from the virtual preamble *** access devices learn to queue orderly by deep reinforcement *** orderly queue weakens the random and avoids collision.A preamble slice is assigned to an orderly access queue at each access *** orderly queue is determined by interaction information among multiple *** the federated reinforcement learning framework,the PSOQA scheme is implemented to guarantee the privacy and security of ***,the access performance of PSOQA is compared with other random contention schemes in different load *** results show that PSOQA can not only improve the access success rate but also guarantee low-latency tolerant performances.
Rice is a major crop and staple food for more than half of the world’s population and plays a vital role in ensuring food security as well as the global economy pests and diseases pose a threat to the production of r...
详细信息
Rice is a major crop and staple food for more than half of the world’s population and plays a vital role in ensuring food security as well as the global economy pests and diseases pose a threat to the production of rice and have a substantial impact on the yield and quality of the crop. In recent times, deep learning methods have gained prominence in predicting rice leaf diseases. Despite the increasing use of these methods, there are notable limitations in existing approaches. These include a scarcity of extensive and diverse collections of leaf disease images, lower accuracy rates, higher time complexity, and challenges in real-time leaf disease detection. To address the limitations, we explicitly investigate various data augmentation approaches using different generative adversarial networks (GANs) for rice leaf disease detection. Along with the GAN model, advanced CNN-based classifiers have been applied to classify the images with improving data augmentation. Our approach involves employing various GANs to generate high-quality synthetic images. This strategy aims to tackle the challenges posed by limited and imbalanced datasets in the identification of leaf diseases. The key benefit of incorporating GANs in leaf disease detection lies in their ability to create synthetic images, effectively augmenting the dataset’s size, enhancing diversity, and reducing the risk of overfitting. For dataset augmentation, we used three distinct GAN architectures—namely simple GAN, CycleGAN, and DCGAN. Our experiments demonstrated that models utilizing the GAN-augmented dataset generally outperformed those relying on the non-augmented dataset. Notably, the CycleGAN architecture exhibited the most favorable outcomes, with the MobileNet model achieving an accuracy of 98.54%. These findings underscore the significant potential of GAN models in improving the performance of detection models for rice leaf diseases, suggesting their promising role in the future research within this doma
The current study is defined by two main aims. An effective strategy for improving local search is to combine the Set Algebra-Based Heuristic Algorithm (SAHA) algorithm with the Nelder-Mead simplex method. The approac...
详细信息
In this study, we utilize a recently proposed non-parametric metaheuristic algorithm known as geometric mean optimization (GMO) to adjust the hidden layer input weights and bias of six ANN variants, namely PSNN, SPNN,...
详细信息
This study presents an overview on intelligent reflecting surface(IRS)-enabled sensing and communication for the forthcoming sixth-generation(6G) wireless networks, in which IRSs are strategically deployed to proactiv...
详细信息
This study presents an overview on intelligent reflecting surface(IRS)-enabled sensing and communication for the forthcoming sixth-generation(6G) wireless networks, in which IRSs are strategically deployed to proactively reconfigure wireless environments to improve both sensing and communication(S&C) performance. First, we exploit a single IRS to enable wireless sensing in the base station's(BS's) non-line-of-sight(NLoS) area. In particular, we present three IRS-enabled NLoS target sensing architectures with fully-passive, semi-passive, and active IRSs, respectively. We compare their pros and cons by analyzing the fundamental sensing performance limits for target detection and parameter estimation. Next, we consider a single IRS to facilitate integrated sensing and communication(ISAC), in which the transmit signals at the BS are used for achieving both S&C functionalities, aided by the IRS through reflective beamforming. We present joint transmit signal and receiver processing designs for realizing efficient ISAC, and jointly optimize the transmit beamforming at the BS and reflective beamforming at the IRS to balance the fundamental performance tradeoff between S&C. Furthermore, we discuss multi-IRS networked ISAC, by particularly focusing on multi-IRS-enabled multi-link ISAC, multi-region ISAC, and ISAC signal routing, respectively. Finally, we highlight various promising research topics in this area to motivate future work.
Image deraining is a highly ill-posed *** significant progress has been made due to the use of deep convolutional neural networks,this problem still remains challenging,especially for the details restoration and gener...
详细信息
Image deraining is a highly ill-posed *** significant progress has been made due to the use of deep convolutional neural networks,this problem still remains challenging,especially for the details restoration and generalization to real rain *** this paper,we propose a deep residual channel attention network(DeRCAN)for *** channel attention mechanism is able to capture the inherent properties of the feature space and thus facilitates more accurate estimations of structures and details for image *** addition,we further propose an unsupervised learning approach to better solve real rain images based on the proposed *** qualitative and quantitative evaluation results on both synthetic and real-world images demonstrate that the proposed DeRCAN performs favorably against state-of-the-art methods.
State-of-the-art recommender systems are increasingly focused on optimizing implementation efficiency, such as enabling on-device recommendations under memory constraints. Current methods commonly use lightweight embe...
详细信息
State-of-the-art recommender systems are increasingly focused on optimizing implementation efficiency, such as enabling on-device recommendations under memory constraints. Current methods commonly use lightweight embeddings for users and items or employ compact embeddings to enhance reusability and reduce memory usage. However, these approaches consider only the coarse-grained aspects of embeddings, overlooking subtle semantic nuances. This limitation results in an adversarial degradation of meta-embedding performance, impeding the system's ability to capture intricate relationships between users and items, leading to suboptimal recommendations. To address this, we propose a novel approach to efficiently learn meta-embeddings with varying grained and apply fine-grained meta-embeddings to strengthen the representation of their coarse-grained counterparts. Specifically, we introduce a recommender system based on a graph neural network, where each user and item is represented as a node. These nodes are directly connected to coarse-grained virtual nodes and indirectly linked to fine-grained virtual nodes, facilitating learning of multi-grained semantics. Fine-grained semantics are captured through sparse meta-embeddings, which dynamically balance embedding uniqueness and memory constraints. To ensure their sparseness, we rely on initialization methods such as sparse principal component analysis combined with a soft thresholding activation function. Moreover, we propose a weight-bridging update strategy that aligns coarse-grained meta-embedding with several fine-grained meta-embeddings based on the underlying semantic properties of users and items. Comprehensive experiments demonstrate that our method outperforms existing baselines. The code of our proposal is available at https://***/htyjers/C2F-MetaEmbed.
In the fields of intelligent transportation and multi-task cooperation, many practical problems can be modeled by colored traveling salesman problem(CTSP). When solving large-scale CTSP with a scale of more than 1000d...
详细信息
In the fields of intelligent transportation and multi-task cooperation, many practical problems can be modeled by colored traveling salesman problem(CTSP). When solving large-scale CTSP with a scale of more than 1000dimensions, their convergence speed and the quality of their solutions are limited. This paper proposes a new hybrid IT?(HIT?) algorithm, which integrates two new strategies, crossover operator and mutation strategy, into the standard IT?. In the iteration process of HIT?, the feasible solution of CTSP is represented by the double chromosome coding, and the random drift and wave operators are used to explore and develop new unknown regions. In this process, the drift operator is executed by the improved crossover operator, and the wave operator is performed by the optimized mutation strategy. Experiments show that HIT? is superior to the known comparison algorithms in terms of the quality solution.
Researchers have recently achieved significant advances in deep learning techniques, which in turn has substantially advanced other research disciplines, such as natural language processing, image processing, speech r...
详细信息
Researchers have recently achieved significant advances in deep learning techniques, which in turn has substantially advanced other research disciplines, such as natural language processing, image processing, speech recognition, and software engineering. Various deep learning techniques have been successfully employed to facilitate software engineering tasks, including code generation, software refactoring, and fault localization. Many studies have also been presented in top conferences and journals, demonstrating the applications of deep learning techniques in resolving various software engineering tasks. However,although several surveys have provided overall pictures of the application of deep learning techniques in software engineering,they focus more on learning techniques, that is, what kind of deep learning techniques are employed and how deep models are trained or fine-tuned for software engineering tasks. We still lack surveys explaining the advances of subareas in software engineering driven by deep learning techniques, as well as challenges and opportunities in each subarea. To this end, in this study, we present the first task-oriented survey on deep learning-based software engineering. It covers twelve major software engineering subareas significantly impacted by deep learning techniques. Such subareas spread out through the whole lifecycle of software development and maintenance, including requirements engineering, software development, testing, maintenance, and developer collaboration. As we believe that deep learning may provide an opportunity to revolutionize the whole discipline of software engineering, providing one survey covering as many subareas as possible in software engineering can help future research push forward the frontier of deep learning-based software engineering more systematically. For each of the selected subareas,we highlight the major advances achieved by applying deep learning techniques with pointers to the available datasets i
暂无评论