With its untameable and traceable properties,blockchain technology has been widely used in the field of data *** to preserve individual privacy while enabling efficient data queries is one of the primary issues with s...
详细信息
With its untameable and traceable properties,blockchain technology has been widely used in the field of data *** to preserve individual privacy while enabling efficient data queries is one of the primary issues with secure data *** this paper,we study verifiable keyword frequency(KF)queries with local differential privacy in *** the numerical and the keyword attributes are present in data objects;the latter are sensitive and require privacy ***,prior studies in blockchain have the problem of trilemma in privacy protection and are unable to handle KF *** propose an efficient framework that protects data owners’privacy on keyword attributes while enabling quick and verifiable query processing for KF *** framework computes an estimate of a keyword’s frequency and is efficient in query time and verification object(VO)size.A utility-optimized local differential privacy technique is used for privacy *** data owner adds noise locally into data based on local differential privacy so that the attacker cannot infer the owner of the keywords while keeping the difference in the probability distribution of the KF within the privacy *** propose the VB-cm tree as the authenticated data structure(ADS).The VB-cm tree combines the Verkle tree and the Count-Min sketch(CM-sketch)to lower the VO size and query *** VB-cm tree uses the vector commitment to verify the query *** fixed-size CM-sketch,which summarizes the frequency of multiple keywords,is used to estimate the KF via hashing *** conduct an extensive evaluation of the proposed *** experimental results show that compared to theMerkle B+tree,the query time is reduced by 52.38%,and the VO size is reduced by more than one order of magnitude.
This paper presents a novel medical imaging framework, Efficient Parallel Deep Transfer SubNet+-based Explainable Model (EPDTNet + -EM), designed to improve the detection and classification of abnormalities in medical...
详细信息
People-centric activity recognition is one of the most critical technologies in a wide range of real-world applications,including intelligent transportation systems, healthcare services, and brain-computer interfaces....
详细信息
People-centric activity recognition is one of the most critical technologies in a wide range of real-world applications,including intelligent transportation systems, healthcare services, and brain-computer interfaces. Large-scale data collection and annotation make the application of machine learning algorithms prohibitively expensive when adapting to new tasks. One way of circumventing this limitation is to train the model in a semi-supervised learning manner that utilizes a percentage of unlabeled data to reduce the labeling burden in prediction tasks. Despite their appeal, these models often assume that labeled and unlabeled data come from similar distributions, which leads to the domain shift problem caused by the presence of distribution gaps. To address these limitations, we propose herein a novel method for people-centric activity recognition,called domain generalization with semi-supervised learning(DGSSL), that effectively enhances the representation learning and domain alignment capabilities of a model. We first design a new autoregressive discriminator for adversarial training between unlabeled and labeled source domains, extracting domain-specific features to reduce the distribution gaps. Second, we introduce two reconstruction tasks to capture the task-specific features to avoid losing information related to representation learning while maintaining task-specific consistency. Finally, benefiting from the collaborative optimization of these two tasks, the model can accurately predict both the domain and category labels of the source domains for the classification task. We conduct extensive experiments on three real-world sensing datasets. The experimental results show that DGSSL surpasses the three state-of-the-art methods with better performance and generalization.
Recently,Generative Adversarial Networks(GANs)have become the mainstream text-to-image(T2I)***,a standard normal distribution noise of inputs cannot provide sufficient information to synthesize an image that approache...
详细信息
Recently,Generative Adversarial Networks(GANs)have become the mainstream text-to-image(T2I)***,a standard normal distribution noise of inputs cannot provide sufficient information to synthesize an image that approaches the ground-truth image ***,the multistage generation strategy results in complex T2I ***,this study proposes a novel feature-grounded single-stage T2I model,which considers the“real”distribution learned from training images as one input and introduces a worst-case-optimized similarity measure into the loss function to enhance the model's generation *** results on two benchmark datasets demonstrate the competitive performance of the proposed model in terms of the Frechet inception distance and inception score compared to those of some classical and state-of-the-art models,showing the improved similarities among the generated image,text,and ground truth.
In this study, tests were done to see what would happen if hydrogen (H2) and lemon grass oil (LO) were used for a lone-cylinder compression ignition engine as a partial diesel replacement. After starting the trial wit...
详细信息
The skin acts as an important barrier between the body and the external environment, playing a vital role as an organ. The application of deep learning in the medical field to solve various health problems has generat...
详细信息
Objective: The purpose of this paper was to use Machine Learning (ML) techniques to extract facial features from images. Accurate face detection and recognition has long been a problem in computer vision. According to...
详细信息
Flexible sensors have been developed for the perception of various stimuli. However, complex deformation,usually resulting from forces or strains from multi-axes, can be challenging to measure due to the lack of indep...
详细信息
Flexible sensors have been developed for the perception of various stimuli. However, complex deformation,usually resulting from forces or strains from multi-axes, can be challenging to measure due to the lack of independent perception of multiaxial stimuli. Herein, flexible sensors based on the metamaterial membrane with zero Poisson's ratio(ZPR) are proposed to achieve independent detection of biaxial stimuli. By deliberately designing the geometric dimensions and arrangement parameters of elements, the Poisson's ratio of an elastomer membrane can be modulated from negative to positive, and the ZPR membrane can maintain a constant transverse dimension under longitudinal stimuli. Due to the accurate monitoring of grasping force by ZPR sensors that are insensitive to curvatures of contact surfaces, rigid robotic manipulators can be guided to safely grasp deformable objects. Meanwhile, the ZPR sensor can also precisely distinguish different states of manipulators. When ZPR sensors are attached to a thermal-actuation soft robot, they can accurately detect the moving distance and direction. This work presents a new strategy for independent biaxial stimuli perception through the design of mechanical metamaterials, and may inspire the future development of advanced flexible sensors for healthcare, human–machine interfaces and robotic tactile sensing.
Medical imaging, a cornerstone of disease diagnosis and treatment planning, faces the hurdles of subjective interpretation and reliance on specialized expertise. Deep learning algorithms show improvements in automatin...
详细信息
Non-Orthogonal Multiple Access(NOMA)has already proven to be an effective multiple access scheme for5th Generation(5G)wireless *** provides improved performance in terms of system throughput,spectral efficiency,fairne...
详细信息
Non-Orthogonal Multiple Access(NOMA)has already proven to be an effective multiple access scheme for5th Generation(5G)wireless *** provides improved performance in terms of system throughput,spectral efficiency,fairness,and energy efficiency(EE).However,in conventional NOMA networks,performance degradation still exists because of the stochastic behavior of wireless *** combat this challenge,the concept of Intelligent Reflecting Surface(IRS)has risen to prominence as a low-cost intelligent solution for Beyond 5G(B5G)*** this paper,a modeling primer based on the integration of these two cutting-edge technologies,i.e.,IRS and NOMA,for B5G wireless networks is *** in-depth comparative analysis of IRS-assisted Power Domain(PD)-NOMA networks is provided through 3-fold ***,a primer is presented on the system architecture of IRS-enabled multiple-configuration PD-NOMA systems,and parallels are drawn with conventional network configurations,i.e.,conventional NOMA,Orthogonal Multiple Access(OMA),and IRS-assisted OMA *** by this,a comparative analysis of these network configurations is showcased in terms of significant performance metrics,namely,individual users'achievable rate,sum rate,ergodic rate,EE,and outage ***,for multi-antenna IRS-enabled NOMA networks,we exploit the active Beamforming(BF)technique by employing a greedy algorithm using a state-of-the-art branch-reduceand-bound(BRB)*** optimality of the BRB algorithm is presented by comparing it with benchmark BF techniques,i.e.,minimum-mean-square-error,zero-forcing-BF,and ***,we present an outlook on future envisioned NOMA networks,aided by IRSs,i.e.,with a variety of potential applications for 6G wireless *** work presents a generic performance assessment toolkit for wireless networks,focusing on IRS-assisted NOMA *** comparative analysis provides a solid foundation for the dev
暂无评论