Global illumination(GI)plays a crucial role in rendering realistic results for virtual exhibitions,such as virtual car *** scenarios usually include all-frequency bidirectional reflectance distribution functions(BRDFs...
详细信息
Global illumination(GI)plays a crucial role in rendering realistic results for virtual exhibitions,such as virtual car *** scenarios usually include all-frequency bidirectional reflectance distribution functions(BRDFs),although their geometries and light configurations may be *** allfrequency BRDFs in real time remains challenging due to the complex light *** approaches,including precomputed radiance transfer,light probes,and the most recent path-tracing-based approaches(ReSTIR PT),cannot satisfy both quality and performance requirements ***,we propose a practical hybrid global illumination approach that combines ray tracing and cached GI by caching the incoming radiance with *** approach can produce results close to those of ofline renderers at the cost of only approximately 17 ms at runtime and is robust over all-frequency *** approach is designed for applications involving static lighting and geometries,such as virtual exhibitions.
Over-the-air computation(AirComp)enables federated learning(FL)to rapidly aggregate local models at the central server using waveform superposition property of wireless *** this paper,a robust transmission scheme for ...
详细信息
Over-the-air computation(AirComp)enables federated learning(FL)to rapidly aggregate local models at the central server using waveform superposition property of wireless *** this paper,a robust transmission scheme for an AirCompbased FL system with imperfect channel state information(CSI)is *** model CSI uncertainty,an expectation-based error model is *** main objective is to maximize the number of selected devices that meet mean-squared error(MSE)requirements for model broadcast and model *** problem is formulated as a combinatorial optimization problem and is solved in two ***,the priority order of devices is determined by a sparsity-inducing ***,a feasibility detection scheme is used to select the maximum number of devices to guarantee that the MSE requirements are *** alternating optimization(AO)scheme is used to transform the resulting nonconvex problem into two convex *** results illustrate the effectiveness and robustness of the proposed scheme.
Advancements in neuromorphic computing have given an impetus to the development of systems with adaptive behavior,dynamic responses,and energy efficiency *** charge-based or emerging memory technologies such as memris...
详细信息
Advancements in neuromorphic computing have given an impetus to the development of systems with adaptive behavior,dynamic responses,and energy efficiency *** charge-based or emerging memory technologies such as memristors have been developed to emulate synaptic plasticity,replicating the key functionality of neurons—integrating diverse presynaptic inputs to fire electrical impulses—has remained *** this study,we developed reconfigurable metal-oxide-semiconductor capacitors(MOSCaps)based on hafnium diselenide(HfSe2).The proposed devices exhibit(1)optoelectronic synaptic features and perform separate stimulus-associated learning,indicating considerable adaptive neuron emulation,(2)dual light-enabled charge-trapping and memcapacitive behavior within the same MOSCap device,whose threshold voltage and capacitance vary based on the light intensity across the visible spectrum,(3)memcapacitor volatility tuning based on the biasing conditions,enabling the transition from volatile light sensing to non-volatile optical data *** reconfigurability and multifunctionality of MOSCap were used to integrate the device into a leaky integrate-and-fire neuron model within a spiking neural network to dynamically adjust firing patterns based on light stimuli and detect exoplanets through variations in light intensity.
In task offloading,the movement of vehicles causes the switching of connected RSUs and servers,which may lead to task offloading failure or high service *** this paper,we analyze the impact of vehicle movements on tas...
详细信息
In task offloading,the movement of vehicles causes the switching of connected RSUs and servers,which may lead to task offloading failure or high service *** this paper,we analyze the impact of vehicle movements on task offloading and reveal that data preparation time for task execution can be minimized via forward-looking ***,a Bi-LSTM-based model is proposed to predict the trajectories of *** service area is divided into several equal-sized *** the actual position of the vehicle and the predicted position by the model belong to the same grid,the prediction is considered correct,thereby reducing the difficulty of vehicle trajectory ***,we propose a scheduling strategy for delay optimization based on the vehicle trajectory *** the inevitable prediction error,we take some edge servers around the predicted area as candidate execution servers and the data required for task execution are backed up to these candidate servers,thereby reducing the impact of prediction deviations on task offloading and converting the modest increase of resource overheads into delay reduction in task *** results show that,compared with other classical schemes,the proposed strategy has lower average task offloading delays.
The development of the Internet of Things(IoT)technology is leading to a new era of smart applications such as smart transportation,buildings,and smart ***,these applications act as the building blocks of IoT-enabled ...
详细信息
The development of the Internet of Things(IoT)technology is leading to a new era of smart applications such as smart transportation,buildings,and smart ***,these applications act as the building blocks of IoT-enabled smart *** high volume and high velocity of data generated by various smart city applications are sent to flexible and efficient cloud computing resources for ***,there is a high computation latency due to the presence of a remote cloud *** computing,which brings the computation close to the data source is introduced to overcome this *** an IoT-enabled smart city environment,one of the main concerns is to consume the least amount of energy while executing tasks that satisfy the delay *** efficient resource allocation at the edge is helpful to address this *** this paper,an energy and delay minimization problem in a smart city environment is formulated as a bi-objective edge resource allocation ***,we presented a three-layer network architecture for IoT-enabled smart ***,we designed a learning automata-based edge resource allocation approach considering the three-layer network architecture to solve the said bi-objective minimization *** Automata(LA)is a reinforcement-based adaptive decision-maker that helps to find the best task and edge resource *** extensive set of simulations is performed to demonstrate the applicability and effectiveness of the LA-based approach in the IoT-enabled smart city environment.
Despite the effectiveness of vision-language supervised fine-tuning in enhancing the performance of vision large language models(VLLMs), existing visual instruction tuning datasets include the following limitations.(1...
详细信息
Despite the effectiveness of vision-language supervised fine-tuning in enhancing the performance of vision large language models(VLLMs), existing visual instruction tuning datasets include the following limitations.(1) Instruction annotation quality: despite existing VLLMs exhibiting strong performance,instructions generated by those advanced VLLMs may still suffer from inaccuracies, such as hallucinations.(2) Instructions and image diversity: the limited range of instruction types and the lack of diversity in image data may impact the model's ability to generate diversified and closer to real-world scenarios outputs. To address these challenges, we construct a high-quality, diverse visual instruction tuning dataset MMInstruct,which consists of 973k instructions from 24 domains. There are four instruction types: judgment, multiplechoice, long visual question answering, and short visual question answering. To construct MMInstruct, we propose an instruction generation data engine that leverages GPT-4V, GPT-3.5, and manual correction. Our instruction generation engine enables semi-automatic, low-cost, and multi-domain instruction generation at 1/6 the cost of manual construction. Through extensive experiment validation and ablation experiments,we demonstrate that MMInstruct could significantly improve the performance of VLLMs, e.g., the model fine-tuning on MMInstruct achieves new state-of-the-art performance on 10 out of 12 benchmarks. The code and data shall be available at https://***/yuecao0119/MMInstruct.
As an important task in emotion analysis, Multimodal Emotion-Cause Pair Extraction in conversations (MECPE) aims to extract all the emotion-cause utterance pairs from a conversation. However, there are two shortcoming...
详细信息
As an important task in emotion analysis, Multimodal Emotion-Cause Pair Extraction in conversations (MECPE) aims to extract all the emotion-cause utterance pairs from a conversation. However, there are two shortcomings in the MECPE task: 1) it ignores emotion utterances whose causes cannot be located in the conversation but require contextualized inference;2) it fails to locate the exact causes that occur in vision or audio modalities beyond text. To address these issues, in this paper, we introduce a new task named Multimodal Emotion-Cause Pair Generation in Conversations (MECPG), which aims to identify the emotion utterances with their emotion categories and generate their corresponding causes in a conversation. To tackle the MECPG task, we construct a dataset based on a benchmark corpus for MECPE. We further propose a generative framework named MONICA, which jointly performs emotion recognition and emotion cause generation with a sequence-to-sequence model. Experiments on our annotated dataset show the superiority of MONICA over several competitive systems. Our dataset and source codes will be publicly released. IEEE
Cross-Site Scripting(XSS)remains a significant threat to web application security,exploiting vulnerabilities to hijack user sessions and steal sensitive *** detection methods often fail to keep pace with the evolving ...
详细信息
Cross-Site Scripting(XSS)remains a significant threat to web application security,exploiting vulnerabilities to hijack user sessions and steal sensitive *** detection methods often fail to keep pace with the evolving sophistication of cyber *** paper introduces a novel hybrid ensemble learning framework that leverages a combination of advanced machine learning algorithms—Logistic Regression(LR),Support Vector Machines(SVM),eXtreme Gradient Boosting(XGBoost),Categorical Boosting(CatBoost),and Deep Neural Networks(DNN).Utilizing the XSS-Attacks-2021 dataset,which comprises 460 instances across various real-world trafficrelated scenarios,this framework significantly enhances XSS attack *** approach,which includes rigorous feature engineering and model tuning,not only optimizes accuracy but also effectively minimizes false positives(FP)(0.13%)and false negatives(FN)(0.19%).This comprehensive methodology has been rigorously validated,achieving an unprecedented accuracy of 99.87%.The proposed system is scalable and efficient,capable of adapting to the increasing number of web applications and user demands without a decline in *** demonstrates exceptional real-time capabilities,with the ability to detect XSS attacks dynamically,maintaining high accuracy and low latency even under significant ***,despite the computational complexity introduced by the hybrid ensemble approach,strategic use of parallel processing and algorithm tuning ensures that the system remains scalable and performs robustly in real-time *** for easy integration with existing web security systems,our framework supports adaptable Application Programming Interfaces(APIs)and a modular design,facilitating seamless augmentation of current *** innovation represents a significant advancement in cybersecurity,offering a scalable and effective solution for securing modern web applications against evolving threats.
Multi-hop reasoning for incomplete Knowledge Graphs(KGs)demonstrates excellent interpretability with decent *** Learning(RL)based approaches formulate multi-hop reasoning as a typical sequential decision *** intractab...
详细信息
Multi-hop reasoning for incomplete Knowledge Graphs(KGs)demonstrates excellent interpretability with decent *** Learning(RL)based approaches formulate multi-hop reasoning as a typical sequential decision *** intractable shortcoming of multi-hop reasoning with RL is that sparse reward signals make performance *** mainstream methods apply heuristic reward functions to counter this ***,the inaccurate rewards caused by heuristic functions guide the agent to improper inference paths and unrelated object *** this end,we propose a novel adaptive Inverse Reinforcement Learning(IRL)framework for multi-hop reasoning,called AInvR.(1)To counter the missing and spurious paths,we replace the heuristic rule rewards with an adaptive rule reward learning mechanism based on agent’s inference trajectories;(2)to alleviate the impact of over-rewarded object entities misled by inaccurate reward shaping and rules,we propose an adaptive negative hit reward learning mechanism based on agent’s sampling strategy;(3)to further explore diverse paths and mitigate the influence of missing facts,we design a reward dropout mechanism to randomly mask and perturb reward parameters for the reward learning *** results on several benchmark knowledge graphs demonstrate that our method is more effective than existing multi-hop approaches.
Crude oil prices (COP) profoundly influence global economic stability, with fluctuations reverberating across various sectors. Accurate forecasting of COP is indispensable for governments, policymakers, and stakeholde...
详细信息
暂无评论