With the invention of Internet-enabled devices,cloud and blockchain-based technologies,an online voting system can smoothly carry out election *** pandemic situations,citizens tend to develop panic about mass gatherin...
详细信息
With the invention of Internet-enabled devices,cloud and blockchain-based technologies,an online voting system can smoothly carry out election *** pandemic situations,citizens tend to develop panic about mass gatherings,which may influence the decrease in the number of *** urges a reliable,flexible,transparent,secure,and cost-effective voting *** proposed online voting system using cloud-based hybrid blockchain technology eradicates the flaws that persist in the existing voting system,and it is carried out in three phases:the registration phase,vote casting phase and vote counting phase.A timestamp-based authentication protocol with digital signature validates voters and candidates during the registration and vote casting *** smart contracts,third-party interventions are eliminated,and the transactions are secured in the blockchain ***,to provide accurate voting results,the practical Byzantine fault tolerance(PBFT)consensus mechanism is adopted to ensure that the vote has not been modified or ***,the overall performance of the proposed system is significantly better than that of the existing *** performance was analyzed based on authentication delay,vote alteration,response time,and latency.
Nowadays, Cloud Computing has attracted a lot of interest from both individual users and organization. However, cloud computing applications face certain security issues, such as data integrity, user privacy, and serv...
详细信息
The increasing dependence on smartphones with advanced sensors has highlighted the imperative of precise transportation mode classification, pivotal for domains like health monitoring and urban planning. This research...
详细信息
The increasing dependence on smartphones with advanced sensors has highlighted the imperative of precise transportation mode classification, pivotal for domains like health monitoring and urban planning. This research is motivated by the pressing demand to enhance transportation mode classification, leveraging the potential of smartphone sensors, notably the accelerometer, magnetometer, and gyroscope. In response to this challenge, we present a novel automated classification model rooted in deep reinforcement learning. Our model stands out for its innovative approach of harnessing enhanced features through artificial neural networks (ANNs) and visualizing the classification task as a structured series of decision-making events. Our model adopts an improved differential evolution (DE) algorithm for initializing weights, coupled with a specialized agent-environment relationship. Every correct classification earns the agent a reward, with additional emphasis on the accurate categorization of less frequent modes through a distinct reward strategy. The Upper Confidence Bound (UCB) technique is used for action selection, promoting deep-seated knowledge, and minimizing reliance on chance. A notable innovation in our work is the introduction of a cluster-centric mutation operation within the DE algorithm. This operation strategically identifies optimal clusters in the current DE population and forges potential solutions using a pioneering update mechanism. When assessed on the extensive HTC dataset, which includes 8311 hours of data gathered from 224 participants over two years. Noteworthy results spotlight an accuracy of 0.88±0.03 and an F-measure of 0.87±0.02, underscoring the efficacy of our approach for large-scale transportation mode classification tasks. This work introduces an innovative strategy in the realm of transportation mode classification, emphasizing both precision and reliability, addressing the pressing need for enhanced classification mechanisms in an eve
Preserving formal style in neural machine translation (NMT) is essential, yet often overlooked as an optimization objective of the training processes. This oversight can lead to translations that, though accurate, lac...
详细信息
Preserving formal style in neural machine translation (NMT) is essential, yet often overlooked as an optimization objective of the training processes. This oversight can lead to translations that, though accurate, lack formality. In this paper, we propose how to improve NMT formality with large language models (LLMs), which combines the style transfer and evaluation capabilities of an LLM and the high-quality translation generation ability of NMT models to improve NMT formality. The proposed method (namely INMTF) encompasses two approaches. The first involves a revision approach using an LLM to revise the NMT-generated translation, ensuring a formal translation style. The second approach employs an LLM as a reward model for scoring translation formality, and then uses reinforcement learning algorithms to fine-tune the NMT model to maximize the reward score, thereby enhancing the formality of the generated translations. Considering the substantial parameter size of LLMs, we also explore methods to reduce the computational cost of INMTF. Experimental results demonstrate that INMTF significantly outperforms baselines in terms of translation formality and translation quality, with an improvement of +9.19 style accuracy points in the German-to-English task and +2.16 COMET score in the Russian-to-English task. Furthermore, our work demonstrates the potential of integrating LLMs within NMT frameworks to bridge the gap between NMT outputs and the formality required in various real-world translation scenarios.
In the electronic manufacturing industry, accurate detection of PCB defects is crucial as it directly impacts product quality and reliability. The primary challenges in PCB defect detection include missed detections a...
详细信息
Semantic segmentation is an important sub-task for many ***,pixel-level ground-truth labeling is costly,and there is a tendency to overfit to training data,thereby limiting the generalization *** domain adaptation can...
详细信息
Semantic segmentation is an important sub-task for many ***,pixel-level ground-truth labeling is costly,and there is a tendency to overfit to training data,thereby limiting the generalization *** domain adaptation can potentially address these problems by allowing systems trained on labelled datasets from the source domain(including less expensive synthetic domain)to be adapted to a novel target *** conventional approach involves automatic extraction and alignment of the representations of source and target domains *** limitation of this approach is that it tends to neglect the differences between classes:representations of certain classes can be more easily extracted and aligned between the source and target domains than others,limiting the adaptation over all ***,we address:this problem by introducing a Class-Conditional Domain Adaptation(CCDA)*** incorporates a class-conditional multi-scale discriminator and class-conditional losses for both segmentation and ***,they measure the segmentation,shift the domain in a classconditional manner,and equalize the loss over *** results demonstrate that the performance of our CCDA method matches,and in some cases,surpasses that of state-of-the-art methods.
Despite recent advances in lane detection methods,scenarios with limited-or no-visual-clue of lanes due to factors such as lighting conditions and occlusion remain challenging and crucial for automated ***,current lan...
详细信息
Despite recent advances in lane detection methods,scenarios with limited-or no-visual-clue of lanes due to factors such as lighting conditions and occlusion remain challenging and crucial for automated ***,current lane representations require complex post-processing and struggle with specific *** by the DETR architecture,we propose LDTR,a transformer-based model to address these *** are modeled with a novel anchorchain,regarding a lane as a whole from the beginning,which enables LDTR to handle special lanes *** enhance lane instance perception,LDTR incorporates a novel multi-referenced deformable attention module to distribute attention around the ***,LDTR incorporates two line IoU algorithms to improve convergence efficiency and employs a Gaussian heatmap auxiliary branch to enhance model representation capability during *** evaluate lane detection models,we rely on Fr´echet distance,parameterized F1-score,and additional synthetic *** results demonstrate that LDTR achieves state-of-the-art performance on well-known datasets.
The Traveling Salesman Problem (TSP) seeks the shortest closed tour that visits each city once and returns to the starting city. This problem is NP-hard, so it is not easy to solve using conventional methods. The grey...
详细信息
This paper introduces an advanced road damage detection algorithm that effectively addresses the shortcomings of existing models, including limited detection performance and large parameter sizes, by utilizing the YOL...
详细信息
Emotions are a vital semantic part of human correspondence. Emotions are significant for human correspondence as well as basic for human–computer cooperation. Viable correspondence between people is possibly achieved...
详细信息
暂无评论