Machine learning has become important for anomaly detection in water quality prediction. Data anomalies are often caused by the difficulties of analysing large amounts of data, both technical and human, but approaches...
详细信息
Delay tolerant wireless sensor networks(DTWSN)is a class of wireless network that finds its deployment in those application scenarios which demand for high packet delivery ratio while maintaining minimal overhead in o...
详细信息
Delay tolerant wireless sensor networks(DTWSN)is a class of wireless network that finds its deployment in those application scenarios which demand for high packet delivery ratio while maintaining minimal overhead in order to prolong network lifetime;owing to resource-constrained nature of *** fundamental requirement of any network is routing a packet from its source to *** of a routing algorithm depends on the number of network parameters utilized by that routing *** the recent years,various routing protocol has been developed for the delay tolerant networks(DTN).A routing protocol known as spray and wait(SnW)is one of the most widely used routing algorithms for *** this paper,we study the SnW routing protocol and propose a modified version of it referred to as Pentago SnW which is based on pentagonal number *** to binary SnW shows promising results through simulation using real-life scenarios of cars and pedestrians randomly moving on a map.
In recent days,Deep Learning(DL)techniques have become an emerging transformation in the field of machine learning,artificial intelligence,computer vision,and so ***,researchers and industries have been highly endorse...
详细信息
In recent days,Deep Learning(DL)techniques have become an emerging transformation in the field of machine learning,artificial intelligence,computer vision,and so ***,researchers and industries have been highly endorsed in the medical field,predicting and controlling diverse diseases at specific *** tumor prediction is a vital chore in analyzing and treating liver *** paper proposes a novel approach for predicting liver tumors using Convolutional Neural Networks(CNN)and a depth-based variant search algorithm with advanced attention mechanisms(CNN-DS-AM).The proposed work aims to improve accuracy and robustness in diagnosing and treating liver *** anticipated model is assessed on a Computed Tomography(CT)scan dataset containing both benign and malignant liver *** proposed approach achieved high accuracy in predicting liver tumors,outperforming other state-of-the-art ***,advanced attention mechanisms were incorporated into the CNN model to enable the identification and highlighting of regions of the CT scans most relevant to predicting liver *** results suggest that incorporating attention mechanisms and a depth-based variant search algorithm into the CNN model is a promising approach for improving the accuracy and robustness of liver tumor *** can assist radiologists in their diagnosis and treatment *** proposed system achieved a high accuracy of 95.5%in predicting liver tumors,outperforming other state-of-the-art methods.
Data analysis tasks aim to provide insightful analysis for given data by incorporating background knowledge of the represented phenomenon, which in turn supports decision-making. While existing large language models(L...
详细信息
Data analysis tasks aim to provide insightful analysis for given data by incorporating background knowledge of the represented phenomenon, which in turn supports decision-making. While existing large language models(LLMs) can describe data trends, they still lag behind human data analysts in terms of integrating external knowledge and in-depth data analysis. Therefore, we propose a multi-agent data analysis framework based on LLMs. The framework decomposes the data analysis task into subtasks by employing three different agents. By empowering agents with the ability to utilize data search tools, the framework enables them to search for arbitrary relevant knowledge during the analysis process, leading to more insightful analysis. Moreover, to enhance the quality of the analysis results, we propose a multi-stage iterative optimization method that iteratively performs data analysis to form more in-depth conclusions. To validate the performance of our framework, we apply it to three real-world problems in the research development of higher education in China data. Experimental results demonstrate that our approach can achieve more insightful data analysis results compared to directly using LLMs alone.
Fake news, Fake certification, and Plagiarism are the most common issues arising these days. During this COVID-19 situation, there are a lot of rumors and fake news spreading and some of us are using fake certificatio...
详细信息
Automated analysis of breast cancer (BC) histopathology images is a challenging task due to the high resolution, multiple magnifications, color variations, the presence of image artifacts, and morphological variabilit...
详细信息
Numerous methods are analysed in detail to improve task schedulingand data security performance in the cloud environment. The methodsinvolve scheduling according to the factors like makespan, waiting time,cost, deadli...
详细信息
Numerous methods are analysed in detail to improve task schedulingand data security performance in the cloud environment. The methodsinvolve scheduling according to the factors like makespan, waiting time,cost, deadline, and popularity. However, the methods are inappropriate forachieving higher scheduling performance. Regarding data security, existingmethods use various encryption schemes but introduce significant serviceinterruption. This article sketches a practical Real-time Application CentricTRS (Throughput-Resource utilization–Success) Scheduling with Data Security(RATRSDS) model by considering all these issues in task scheduling anddata security. The method identifies the required resource and their claim timeby receiving the service requests. Further, for the list of resources as services,the method computes throughput support (Thrs) according to the number ofstatements executed and the complete statements of the service. Similarly, themethod computes Resource utilization support (Ruts) according to the idletime on any duty cycle and total servicing time. Also, the method computesthe value of Success support (Sus) according to the number of completions forthe number of allocations. The method estimates the TRS score (ThroughputResource utilization Success) for different resources using all these supportmeasures. According to the value of the TRS score, the services are rankedand scheduled. On the other side, based on the requirement of service requests,the method computes Requirement Support (RS). The selection of service isperformed and allocated. Similarly, choosing the route according to the RouteSupport Measure (RSM) enforced route security. Finally, data security hasgets implemented with a service-based encryption technique. The RATRSDSscheme has claimed higher performance in data security and scheduling.
Numerous neural network(NN)applications are now being deployed to mobile *** applications usually have large amounts of calculation and data while requiring low inference latency,which poses challenges to the computin...
详细信息
Numerous neural network(NN)applications are now being deployed to mobile *** applications usually have large amounts of calculation and data while requiring low inference latency,which poses challenges to the computing ability of mobile ***,devices’life and performance depend on ***,in many scenarios,such as industrial production and automotive systems,where the environmental temperatures are usually high,it is important to control devices’temperatures to maintain steady *** this paper,we propose a thermal-aware channel-wise heterogeneous NN inference *** contains two parts,the thermal-aware dynamic frequency(TADF)algorithm and the heterogeneous-processor single-layer workload distribution(HSWD)*** on a mobile device’s architecture characteristics and environmental temperature,TADF can adjust the appropriate running speed of the central processing unit and graphics processing unit,and then the workload of each layer in the NN model is distributed by HSWD in line with each processor’s running speed and the characteristics of the layers as well as heterogeneous *** experimental results,where representative NNs and mobile devices were used,show that the proposed method can considerably improve the speed of the on-device inference by 21%–43%over the traditional inference method.
Advent of GAN networks has enabled several tasks such as text to face generation easier. It helps in synthesizing several instances of data from the actual data. It gives an idea on new possibilities for existing data...
详细信息
We design and analyze an iterative two-grid algorithm for the finite element discretizations of strongly nonlinear elliptic boundary value problems in this *** propose an iterative two-grid algorithm,in which a nonlin...
详细信息
We design and analyze an iterative two-grid algorithm for the finite element discretizations of strongly nonlinear elliptic boundary value problems in this *** propose an iterative two-grid algorithm,in which a nonlinear problem is first solved on the coarse space,and then a symmetric positive definite problem is solved on the fine *** main contribution in this paper is to establish a first convergence analysis,which requires dealing with four coupled error estimates,for the iterative two-grid *** also present some numerical experiments to confirm the efficiency of the proposed algorithm.
暂无评论