Pulsed current cathodic protection(PCCP) could be more effective than direct current cathodic protection(DCCP)for mitigating corrosion in buried structures in the oil and gas industries if appropriate pulsed parameter...
详细信息
Pulsed current cathodic protection(PCCP) could be more effective than direct current cathodic protection(DCCP)for mitigating corrosion in buried structures in the oil and gas industries if appropriate pulsed parameters are chosen. The purpose of this research is to present the corrosion prevention mechanism of the PCCP technique by taking into account the effects of duty cycle as well as frequency, modeling the relationships between pulse parameters(frequency and duty cycle) and system outputs(corrosion rate, protective current and pipe-to-soil potential) and finally identifying the most effective protection conditions over a wide range of frequency(2–10 kHz) and duty cycle(25%-75%). For this, pipe-to-soil potential, pH, current and power consumption, corrosion rate, surface deposits and investigation of pitting corrosion were taken into account. To model the input-output relationship in the PCCP method, a data-driven machine learning approach was used by training an artificial neural network(ANN). The results revealed that the PCCP system could yield the best protection conditions at 10 kHz frequency and 50% duty cycle, resulting in the longest protection length with the lowest corrosion rate at a consumption current 0.3 time that of the DCCP method. In the frequency range of 6–10 kHz and duty cycles of 50%-75%, SEM images indicated a uniform distribution of calcite deposits and no pits on cathode surface.
Today's deep learning models face an increasing demand to handle dynamic shape tensors and computation whose shape information remains unknown at compile time and varies in a nearly infinite range at runtime. This...
详细信息
Today's deep learning models face an increasing demand to handle dynamic shape tensors and computation whose shape information remains unknown at compile time and varies in a nearly infinite range at runtime. This shape dynamism brings tremendous challenges for existing compilation pipelines designed for static models which optimize tensor programs relying on exact shape values. This paper presents TSCompiler, an end-to-end compilation framework for dynamic shape models. TSCompiler first proposes a symbolic shape propagation algorithm to recover symbolic shape information at compile time to enable subsequent optimizations. TSCompiler then partitions the shape-annotated computation graph into multiple subgraphs and fine-tunes the backbone operators from the subgraph within a hardware-aligned search space to find a collection of high-performance schedules. TSCompiler can propagate the explored backbone schedule to other fusion groups within the same subgraph to generate a set of parameterized tensor programs for fused cases based on dependence analysis. At runtime, TSCompiler utilizes an occupancy-targeted cost model to select from pre-compiled tensor programs for varied tensor shapes. Extensive evaluations show that TSCompiler can achieve state-of-the-art speedups for dynamic shape models. For example, we can improve kernel efficiency by up to 3.97× on NVIDIA RTX3090, and 10.30× on NVIDIA A100 and achieve up to five orders of magnitude speedups on end-to-end latency.
The Brain Tumor(BT)is created by an uncontrollable rise of anomalous cells in brain tissue,and it consists of 2 types of cancers they are malignant and benign *** benevolent BT does not affect the neighbouring healthy...
详细信息
The Brain Tumor(BT)is created by an uncontrollable rise of anomalous cells in brain tissue,and it consists of 2 types of cancers they are malignant and benign *** benevolent BT does not affect the neighbouring healthy and normal tissue;however,the malignant could affect the adjacent brain tissues,which results in *** recognition of BT is highly significant to protecting the patient’s ***,the BT can be identified through the magnetic resonance imaging(MRI)scanning *** the radiotherapists are not offering effective tumor segmentation in MRI images because of the position and unequal shape of the tumor in the ***,ML has prevailed against standard image processing *** studies denote the superiority of machine learning(ML)techniques over standard ***,this study develops novel brain tumor detection and classification model using met heuristic optimization with machine learning(BTDC-MOML)*** accomplish the detection of brain tumor effectively,a computer-Aided Design(CAD)model using Machine Learning(ML)technique is proposed in this research ***,the input image pre-processing is performed using Gaborfiltering(GF)based noise removal,contrast enhancement,and skull ***,mayfly optimization with the Kapur’s thresholding based segmentation process takes *** feature extraction proposes,local diagonal extreme patterns(LDEP)are *** last,the Extreme Gradient Boosting(XGBoost)model can be used for the BT classification *** accuracy analysis is performed in terms of Learning accuracy,and the validation accuracy is performed to determine the efficiency of the proposed research *** experimental validation of the proposed model demonstrates its promising performance over other existing methods.
Communication occurs commonly between two or more individuals and often it involves the use of speech. However, under certain circumstances, the use of speech may be restricted causing a hindrance in communication. Th...
详细信息
The earlier research clearly indicated that the bimodal authentication system has more efficiency than unimodal and multimodal. This is due to the reason for the best intact biometric traits of fingerprint and retina....
详细信息
Insights derived out of image captioning systems have potential applications in real life, including providing auditory assistance for the visually impaired. This paper proposes TransEffiVisNet, a novel image captioni...
详细信息
Machine learning algorithms generally assume that the data are balanced in nature. However, medical datasets suffer from the curse of dimensionality and class imbalance problems. The medical datasets are obtained from...
详细信息
Machine learning algorithms generally assume that the data are balanced in nature. However, medical datasets suffer from the curse of dimensionality and class imbalance problems. The medical datasets are obtained from the patient information which creates an imbalance in class distribution as the number of normal persons is more than the number of patients and contains a large number of features to represent a sample. It tends to the machine learning algorithms biased toward the majority class which degrades their classification performance for minority class samples and increases the computation overhead. Therefore, oversampling, feature selection and feature weighting-based four strategies are proposed to deal with the problems of class imbalance and high dimensionality. The key idea behind the proposed strategies is to generate a balanced sample space along with the optimal weighted feature space of the most relevant and discriminative features. The Synthetic Minority Oversampling Technique is utilized to generate the synthetic minority class samples and reduce the bias toward the majority class. An Improved Elephant Herding Optimization algorithm is applied to select the optimal features and weights for reducing the computation overhead and improving the interpretation ability of the learning algorithms by providing weights to relevant features. In addition, thirteen methods are developed from the proposed strategies to deal with the problems of high-dimensionality and imbalanced data. The optimized k-Nearest Neighbor (k-NN) learning algorithm is utilized to perform classification. The performance of the proposed methods is evaluated and compared for sixteen high-dimensional imbalanced medical datasets. Further, Freidman’s mean rank test is applied to show the statistical difference between the proposed methods. Experimental and statistical results show that the proposed Feature Weighting followed by the Feature Selection (FW–FS) method performed significantly b
The gannet optimization algorithm (GOA) is an effective group intelligence algorithm inspired by the foraging behavior of gannets. Despite its merits, considerable potential exists for enhancing its exploration and co...
详细信息
The accessibility and readability of Generative Artificial Intelligence systems like GPT and Google BARD are crucial factors that require thorough examination. In today’s digitally connected world, where AI-generated...
详细信息
Recommender systems aim to filter information effectively and recommend useful sources to match users' requirements. However, the exponential growth of information in recent social networks may cause low predictio...
详细信息
暂无评论