Federated Learning (FL) offers significant advancements in user/data privacy, learning quality, model efficiency, scalability, and network communication latency. However, it faces notable security challenges, particul...
详细信息
This paper presents an intelligent waste sorting system that utilizes computer vision and deep learning to accurately categorize waste items. Moreover, the system incentivizes proper waste disposal through a rewards s...
详细信息
Detection and segmentation of defocus blur is a challenging task in digital imaging applications as the blurry images comprise of blur and sharp regions that wrap significant information and require effective methods ...
详细信息
Detection and segmentation of defocus blur is a challenging task in digital imaging applications as the blurry images comprise of blur and sharp regions that wrap significant information and require effective methods for information *** defocus blur detection and segmentation methods have several limitations i.e.,discriminating sharp smooth and blurred smooth regions,low recognition rate in noisy images,and high computational cost without having any prior knowledge of images i.e.,blur degree and camera ***,there exists a dire need to develop an effective method for defocus blur detection,and segmentation robust to the above-mentioned *** paper presents a novel features descriptor local directional mean patterns(LDMP)for defocus blur detection and employ KNN matting over the detected LDMP-Trimap for the robust segmentation of sharp and blur *** argue/hypothesize that most of the image fields located in blurry regions have significantly less specific local patterns than those in the sharp regions,therefore,proposed LDMP features descriptor should reliably detect the defocus blurred *** fusion of LDMP features with KNN matting provides superior performance in terms of obtaining high-quality segmented regions in the ***,the proposed LDMP features descriptor is robust to noise and successfully detects defocus blur in high-dense noisy *** results on Shi and Zhao datasets demonstrate the effectiveness of the proposed method in terms of defocus blur *** and comparative analysis signify that our method achieves superior segmentation performance and low computational cost of 15 seconds.
The correlation of security alerts is crucial for effective threat detection and mitigation in modern cybersecurity landscapes. With the exponential growth in the volume of generated alerts, there arises an imperative...
详细信息
Deep learning has become an important computational paradigm in our daily lives with a wide range of applications,from authentication using facial recognition to autonomous driving in smart vehicles. The quality of th...
Deep learning has become an important computational paradigm in our daily lives with a wide range of applications,from authentication using facial recognition to autonomous driving in smart vehicles. The quality of the deep learning models, i.e., neural architectures with parameters trained over a dataset, is crucial to our daily living and economy.
Recommendation services become an essential and hot research topic for researchers *** data such asReviews play an important role in the recommendation of the *** was achieved by deep learning approaches for capturing...
详细信息
Recommendation services become an essential and hot research topic for researchers *** data such asReviews play an important role in the recommendation of the *** was achieved by deep learning approaches for capturing user and product information from a short ***,such previously used approaches do not fairly and efficiently incorporate users’preferences and product *** proposed novel Hybrid Deep Collaborative Filtering(HDCF)model combines deep learning capabilities and deep interaction modeling with high performance for True *** overcome the cold start problem,the new overall rating is generated by aggregating the Deep Multivariate Rating DMR(Votes,Likes,Stars,and Sentiment scores of reviews)from different external data sources because different sites have different rating scores about the same product that make confusion for the user to make a decision,either product is truly popular or *** proposed novel HDCF model consists of four major modules such as User Product Attention,Deep Collaborative Filtering,Neural Sentiment Classifier,and Deep Multivariate Rating(UPA-DCF+NSC+DMR)to solve the addressed *** results demonstrate that our novel model is outperforming state-of-the-art IMDb,Yelp2013,and Yelp2014 datasets for the true top-n recommendation of products using HDCF to increase the accuracy,confidence,and trust of recommendation services.
作者:
Abu-Nassar, Ahmad M.Morsi, Walid G.
Electrical Computer and Software Engineering Department Faculty of Engineering and Applied Science OshawaONL1G 0C5 Canada
Transportation electrification plays an important role in the operation of the smart grid through the integration of the electric vehicle fast charging stations (EVFCSs), which allows the electric vehicles to provide ...
详细信息
With the exponential rise in global air traffic,ensuring swift passenger processing while countering potential security threats has become a paramount concern for aviation *** X-ray baggage monitoring is now standard,...
详细信息
With the exponential rise in global air traffic,ensuring swift passenger processing while countering potential security threats has become a paramount concern for aviation *** X-ray baggage monitoring is now standard,manual screening has several limitations,including the propensity for errors,and raises concerns about passenger *** address these drawbacks,researchers have leveraged recent advances in deep learning to design threatsegmentation ***,these models require extensive training data and labour-intensive dense pixelwise annotations and are finetuned separately for each dataset to account for inter-dataset ***,this study proposes a semi-supervised contour-driven broad learning system(BLS)for X-ray baggage security threat instance segmentation referred to as *** research methodology involved enhancing representation learning and achieving faster training capability to tackle severe occlusion and class imbalance using a single training routine with limited baggage *** proposed framework was trained with minimal supervision using resource-efficient image-level labels to localize illegal items in multi-vendor baggage *** specifically,the framework generated candidate region segments from the input X-ray scans based on local intensity transition cues,effectively identifying concealed prohibited items without entire baggage *** multi-convolutional BLS exploits the rich complementary features extracted from these region segments to predict object categories,including threat and benign *** contours corresponding to the region segments predicted as threats were then utilized to yield the segmentation *** proposed C-BLX system was thoroughly evaluated on three highly imbalanced public datasets and surpassed other competitive approaches in baggage-threat segmentation,yielding 90.04%,78.92%,and 59.44%in terms of mIoU on GDXray,SIXray,and Compass-XP,***,the lim
Complex networking analysis is a powerful technique for understanding both complex networks and big graphs in ubiquitous computing. Particularly, there are several novel metrics, such as k-clique and k-core are propos...
详细信息
This paper introduces a comprehensive framework for intent-based management of networks, security, and applications in software-defined vehicles (SDVs) within 5G networks. To address the complexities and operational c...
详细信息
暂无评论