This study applies single-valued neutrosophic sets, which extend the frameworks of fuzzy and intuitionistic fuzzy sets, to graph theory. We introduce a new category of graphs called Single-Valued Heptapartitioned Neut...
详细信息
Plant diseases significantly threaten global food security and economic stability by reducing crop yields, increasing production costs, and exacerbating food shortages. Early and precise detection of plant diseases is...
详细信息
Rank aggregation is the combination of several ranked lists from a set of candidates to achieve a better ranking by combining information from different sources. In feature selection problem, due to the heterogeneity ...
详细信息
Preservation of the crops depends on early and accurate detection of pests on crops as they cause several diseases decreasing crop production and quality. Several deep-learning techniques have been applied to overcome...
详细信息
Preservation of the crops depends on early and accurate detection of pests on crops as they cause several diseases decreasing crop production and quality. Several deep-learning techniques have been applied to overcome the issue of pest detection on crops. We have developed the YOLOCSP-PEST model for Pest localization and classification. With the Cross Stage Partial Network (CSPNET) backbone, the proposed model is a modified version of You Only Look Once Version 7 (YOLOv7) that is intended primarily for pest localization and classification. Our proposed model gives exceptionally good results under conditions that are very challenging for any other comparable models especially conditions where we have issues with the luminance and the orientation of the images. It helps farmers working out on their crops in distant areas to determine any infestation quickly and accurately on their crops which helps in the quality and quantity of the production yield. The model has been trained and tested on 2 datasets namely the IP102 data set and a local crop data set on both of which it has shown exceptional results. It gave us a mean average precision (mAP) of 88.40% along with a precision of 85.55% and a recall of 84.25% on the IP102 dataset meanwhile giving a mAP of 97.18% on the local data set along with a recall of 94.88% and a precision of 97.50%. These findings demonstrate that the proposed model is very effective in detecting real-life scenarios and can help in the production of crops improving the yield quality and quantity at the same time.
In this work, a novel methodological approach to multi-attribute decision-making problems is developed and the notion of Heptapartitioned Neutrosophic Set Distance Measures (HNSDM) is introduced. By averaging the Pent...
详细信息
Online offensive behaviour continues to rise with the increasing popularity and use of social media. Various techniques have been used to address this issue. However, most existing studies consider offensive content i...
详细信息
Nowadays, Cloud Computing has attracted a lot of interest from both individual users and organization. However, cloud computing applications face certain security issues, such as data integrity, user privacy, and serv...
详细信息
In this paper, we have proposed a novel deep-learning model to process electrocardiogram (ECG) signals from single-lead ECG device. This is achieved by using a hybrid of CNN (convolutional neural network) and LSTM (lo...
详细信息
This work introduces PCA-FLANN, an innovative hybrid model combining principal component analysis (PCA) with functional link artificial neural network (FLANN) to achieve efficient non-linear dimensionality reduction a...
详细信息
An image can convey a thousand words. This statement emphasizes the importance of illustrating ideas visually rather than writing them down. Although detailed image representation is typically instructive, there are s...
详细信息
暂无评论