作者:
Baonan ZhouBinglong ZhaoChangning WuJunguo LiKe LiuDepartment of Chemistry
Southern University of Science and TechnologyShenzhen518055China Department of Mechanical EngineeringThe Hong Kong Polytechnic UniversityHong Kong999077China Beijing Petrochemical Engineering Co.Ltd.Beijing100107China School of Innovation and EntrepreneurshipSouthern University of Science and TechnologyShenzhen518055China
In this research, precise motion control and synchronized high-speed microscopic dual-wavelength interferometry were employed to investigate the impact of surface-active components on the rupture behavior of wetting f...
详细信息
In this research, precise motion control and synchronized high-speed microscopic dual-wavelength interferometry were employed to investigate the impact of surface-active components on the rupture behavior of wetting films. The findings unveiled a novel mechanism for wetting film rupture at hydrophobic interfaces, propelled by gas migration towards the solid-liquid interface, resulting in the nucleation and growth of surface nanobubble. Salt ions accelerate film rupture by reducing electrostatic interactions and enhancing gas transfer, whereas surfactant adsorption immobilizes the gas-liquid interface through the Marangoni effect, thereby postponing rupture by impeding gas migration and surface nanobubble formation. Furthermore, surfactants influence the kinetics of three-phase contact line formation, where variations in molecular structure, solubility, and ionic properties contributing to differing levels of friction, and thereby affecting the overall dynamics of wetting films.
Advancements in neuromorphic computing have given an impetus to the development of systems with adaptive behavior,dynamic responses,and energy efficiency *** charge-based or emerging memory technologies such as memris...
详细信息
Advancements in neuromorphic computing have given an impetus to the development of systems with adaptive behavior,dynamic responses,and energy efficiency *** charge-based or emerging memory technologies such as memristors have been developed to emulate synaptic plasticity,replicating the key functionality of neurons—integrating diverse presynaptic inputs to fire electrical impulses—has remained *** this study,we developed reconfigurable metal-oxide-semiconductor capacitors(MOSCaps)based on hafnium diselenide(HfSe2).The proposed devices exhibit(1)optoelectronic synaptic features and perform separate stimulus-associated learning,indicating considerable adaptive neuron emulation,(2)dual light-enabled charge-trapping and memcapacitive behavior within the same MOSCap device,whose threshold voltage and capacitance vary based on the light intensity across the visible spectrum,(3)memcapacitor volatility tuning based on the biasing conditions,enabling the transition from volatile light sensing to non-volatile optical data *** reconfigurability and multifunctionality of MOSCap were used to integrate the device into a leaky integrate-and-fire neuron model within a spiking neural network to dynamically adjust firing patterns based on light stimuli and detect exoplanets through variations in light intensity.
This study focuses on creating an accurate reflection prediction model that will guide the design of filters with multilayer Anti-Reflection Coating (ARC) to optimize the thickness parameters using Machine Learning (M...
详细信息
This study focuses on creating an accurate reflection prediction model that will guide the design of filters with multilayer Anti-Reflection Coating (ARC) to optimize the thickness parameters using Machine Learning (ML) and Deep Learning (DL) techniques. This model aims to shed light on the design process of a multilayer optical filter, making it more cost-effective by providing faster and more precise production. In creating this model, a dataset containing data obtained from 3000 (1500 Ge–Al2O3, 1500 Ge–SiO2) simulations previously performed on a computer based on the thicknesses of multilayer structural materials was used. The data are generated using Computational Electromagnetic simulation software based on the Finite-Difference Time-Domain method. To understand the mechanism of the proposed model, two different two-layer coating simulations were studied. While Ge was used as the substrate in both coatings, Al2O3 and SiO2 were used as the second layers. The data set consists of the 3–5 µm and 8–12 µm bands typical for the mid-wave infrared (MWIR) and long-wave infrared (LWIR) bands and includes reflectance values for wavelengths ranging between these spectra. In the specified 2-layer data set, the average reflectance was obtained with a minimum of 0.36 at 515 nm Ge and 910 nm SiO2 thicknesses. This value can be increased by adapting the proposed model to more than 2 layers. Six ML algorithms and a DL model, including artificial neural networks and convolutional neural networks, are evaluated to determine the most effective approach for predicting reflectance properties. Furthermore, in the proposed model, a hyperparameter tuning phase is used in the study to compare the efficiency of ML and DL methods to generate dual-band ARC and maximize the prediction accuracy of the DL algorithm. To our knowledge, this is the first time this has been implemented in this field. The results show that ML models, particularly decision tree (MSE: 0.00000069, RMSE: 0.00083), rand
In understanding brain functioning by Electroencephalography (EEG), it is essential to be able to not only identify more active brain areas but also understand connectivity among different areas. The functional and ef...
详细信息
Cancer remains the leading cause of death worldwide, significantly impacting individuals and healthcare systems alike. In recent decades, skin cancer has surged in prevalence compared to other major cancer types. Vari...
详细信息
This paper addresses the underexplored landscape of chaotic functions in steganography, existing literature when examined under PRISMA-ScR framework it was realized that most of the studies predominantly focuses on ut...
详细信息
In this work, VoteDroid a novel fine-tuned deep learning models-based ensemble voting classifier has been proposed for detecting malicious behavior in Android applications. To this end, we proposed adopting the random...
详细信息
The skin acts as an important barrier between the body and the external environment, playing a vital role as an organ. The application of deep learning in the medical field to solve various health problems has generat...
详细信息
While spin-orbit interaction has been extensively studied,few investigations have reported on the interaction between orbital angular momenta(OAMs).In this work,we study a new type of orbit-orbit coupling between the ...
详细信息
While spin-orbit interaction has been extensively studied,few investigations have reported on the interaction between orbital angular momenta(OAMs).In this work,we study a new type of orbit-orbit coupling between the longitudinal OAM and the transverse OAM carried by a three-dimensional(3D)spatiotemporal optical vortex(STOV)in the process of tight *** 3D STOV possesses orthogonal OAMs in the x-y,t-x,and y-t planes,and is preconditioned to overcome the spatiotemporal astigmatism effect.x,y,and t are the axes in the spatiotemporal *** corresponding focused wavepacket is calculated by employing the Debye diffraction theory,showing that a phase singularity ring is generated by the interactions among the transverse and longitudinal vortices in the highly confined *** Fourier-transform decomposition of the Debye integral is employed to analyze the mechanism of the orbit-orbit *** is the first revelation of coupling between the longitudinal OAM and the transverse OAM,paving the way for potential applications in optical trapping,laser machining,nonlinear light-matter interactions,and more.
This paper introduces a simple yet effective approach for developing fuzzy logic controllers(FLCs)to identify the maximum power point(MPP)and optimize the photovoltaic(PV)system to extract the maximum power in differe...
详细信息
This paper introduces a simple yet effective approach for developing fuzzy logic controllers(FLCs)to identify the maximum power point(MPP)and optimize the photovoltaic(PV)system to extract the maximum power in different environmental *** propose a robust FLC with low computational complexity by reducing the number of membership functions and *** optimize the performance of the FLC,metaheuristic algorithms are employed to determine the parameters of the *** evaluate the proposed FLC in various panel configurations under different environmental *** results indicate that the proposed FLC can easily adapt to various panel configurations and perform better than other benchmarks in terms of enhanced stability,responsiveness,and power transfer under various scenarios.
暂无评论