Advancements in smart applications highlight the need for increased processing and storage capacity at Smart Devices (SDs). To tackle this, Edge computing (EC) is enabled to offload SD workloads to distant edge server...
详细信息
Wheeled robots are highly efficient in human living environments. However, conventional wheeled designs, limited by degrees of freedom, struggle to meet varying footprint needs and achieve omnidirectional mobility. Th...
详细信息
Grape crops are a great source of income for *** yield and quality of grapes can be improved by preventing and treating *** farmer’s yield will be dramatically impacted if diseases are found on grape *** detection ca...
详细信息
Grape crops are a great source of income for *** yield and quality of grapes can be improved by preventing and treating *** farmer’s yield will be dramatically impacted if diseases are found on grape *** detection can reduce the chances of leaf diseases affecting other healthy *** studies have been conducted to detect grape leaf diseases,but most fail to engage with end users and integrate the model with real-time mobile *** study developed a mobile-based grape leaf disease detection(GLDD)application to identify infected leaves,Grape Guard,based on a TensorFlow Lite(TFLite)model generated from the You Only Look Once(YOLO)v8 model.A public grape leaf disease dataset containing four classes was used to train the *** results of this study were relied on the YOLO architecture,specifically YOLOv5 and *** extensive experiments with different image sizes,YOLOv8 performed better than ***8 achieved 99.9%precision,100%recall,99.5%mean average precision(mAP),and 88%mAP50-95 for all classes to detect grape leaf *** Grape Guard android mobile application can accurately detect the grape leaf disease by capturing images from grape vines.
This paper presents a research study on the use of Convolutional Neural Network (CNN), ResNet50, InceptionV3, EfficientNetB0 and NASNetMobile models to efficiently detect brain tumors in order to reduce the time requi...
详细信息
Automated analysis of breast cancer (BC) histopathology images is a challenging task due to the high resolution, multiple magnifications, color variations, the presence of image artifacts, and morphological variabilit...
详细信息
The number of Internet of Things (IoT) devices has increased rapidly in recent years, but lack effective methods to integrate their computational power. In this article, we propose NC-Load, which couples IoT devices i...
详细信息
Glaucoma is currently one of the most significant causes of permanent blindness. Fundus imaging is the most popular glaucoma screening method because of the compromises it has to make in terms of portability, size, an...
详细信息
Glaucoma is currently one of the most significant causes of permanent blindness. Fundus imaging is the most popular glaucoma screening method because of the compromises it has to make in terms of portability, size, and cost. In recent years, convolution neural networks (CNNs) have revolutionized computer vision. Convolution is a "local" CNN technique that is only applicable to a small region surrounding an image. Vision Transformers (ViT) use self-attention, which is a "global" activity since it collects information from the entire image. As a result, the ViT can successfully gather distant semantic relevance from an image. This study examined several optimizers, including Adamax, SGD, RMSprop, Adadelta, Adafactor, Nadam, and Adagrad. With 1750 Healthy and Glaucoma images in the IEEE fundus image dataset and 4800 healthy and glaucoma images in the LAG fundus image dataset, we trained and tested the ViT model on these datasets. Additionally, the datasets underwent image scaling, auto-rotation, and auto-contrast adjustment via adaptive equalization during preprocessing. The results demonstrated that preparing the provided dataset with various optimizers improved accuracy and other performance metrics. Additionally, according to the results, the Nadam Optimizer improved accuracy in the adaptive equalized preprocessing of the IEEE dataset by up to 97.8% and in the adaptive equalized preprocessing of the LAG dataset by up to 92%, both of which were followed by auto rotation and image resizing processes. In addition to integrating our vision transformer model with the shift tokenization model, we also combined ViT with a hybrid model that consisted of six different models, including SVM, Gaussian NB, Bernoulli NB, Decision Tree, KNN, and Random Forest, based on which optimizer was the most successful for each dataset. Empirical results show that the SVM Model worked well and improved accuracy by up to 93% with precision of up to 94% in the adaptive equalization preprocess
The agriculture industry's production and food quality have been impacted by plant leaf diseases in recent years. Hence, it is vital to have a system that can automatically identify and diagnose diseases at an ini...
详细信息
Optical information encoding is promising for many applications in sensing, data storage, and computing. Recently, various strategies have been suggested to encode optical information in planar devices. Among these, o...
详细信息
To predict the lithium-ion(Li-ion) battery degradation trajectory in the early phase,arranging the maintenance of battery energy storage systems is of great ***,under different operation conditions,Li-ion batteries pr...
详细信息
To predict the lithium-ion(Li-ion) battery degradation trajectory in the early phase,arranging the maintenance of battery energy storage systems is of great ***,under different operation conditions,Li-ion batteries present distinct degradation patterns,and it is challenging to capture negligible capacity fade in early *** the data-driven method showing promising performance,insufficient data is still a big issue since the ageing experiments on the batteries are too slow and *** this study,we proposed twin autoencoders integrated into a two-stage method to predict the early cycles' degradation *** two-stage method can properly predict the degradation from course to *** twin autoencoders serve as a feature extractor and a synthetic data generator,***,a learning procedure based on the long-short term memory(LSTM) network is designed to hybridize the learning process between the real and synthetic *** performance of the proposed method is verified on three datasets,and the experimental results show that the proposed method can achieve accurate predictions compared to its competitors.
暂无评论