Software testing is a critical task that can be used to ensure the quality of the end product. Different types of applications process the input data with respect to a specific operation and its outcomes are generated...
详细信息
In this paper,a robust and consistent COVID-19 emergency decision-making approach is proposed based on q-rung linear diophantine fuzzy set(q-RLDFS),differential evolutionary(DE)optimization principles,and evidential r...
详细信息
In this paper,a robust and consistent COVID-19 emergency decision-making approach is proposed based on q-rung linear diophantine fuzzy set(q-RLDFS),differential evolutionary(DE)optimization principles,and evidential reasoning(ER)*** proposed approach uses q-RLDFS in order to represent the evaluating values of the alternatives corresponding to the *** optimization is used to obtain the optimal weights of the attributes,and ER methodology is used to compute the aggregated q-rung linear diophantine fuzzy values(q-RLDFVs)of each *** the score values of alternatives are computed based on the aggregated *** alternative with the maximum score value is selected as a better *** applicability of the proposed approach has been illustrated in COVID-19 emergency decision-making system and sustainable energy planning ***,we have validated the proposed approach with a numerical ***,a comparative study is provided with the existing models,where the proposed approach is found to be robust to perform better and consistent in uncertain environments.
Purpose: The rapid spread of COVID-19 has resulted in significant harm and impacted tens of millions of people globally. In order to prevent the transmission of the virus, individuals often wear masks as a protective ...
详细信息
Rice is a major crop and staple food for more than half of the world’s population and plays a vital role in ensuring food security as well as the global economy pests and diseases pose a threat to the production of r...
详细信息
Rice is a major crop and staple food for more than half of the world’s population and plays a vital role in ensuring food security as well as the global economy pests and diseases pose a threat to the production of rice and have a substantial impact on the yield and quality of the crop. In recent times, deep learning methods have gained prominence in predicting rice leaf diseases. Despite the increasing use of these methods, there are notable limitations in existing approaches. These include a scarcity of extensive and diverse collections of leaf disease images, lower accuracy rates, higher time complexity, and challenges in real-time leaf disease detection. To address the limitations, we explicitly investigate various data augmentation approaches using different generative adversarial networks (GANs) for rice leaf disease detection. Along with the GAN model, advanced CNN-based classifiers have been applied to classify the images with improving data augmentation. Our approach involves employing various GANs to generate high-quality synthetic images. This strategy aims to tackle the challenges posed by limited and imbalanced datasets in the identification of leaf diseases. The key benefit of incorporating GANs in leaf disease detection lies in their ability to create synthetic images, effectively augmenting the dataset’s size, enhancing diversity, and reducing the risk of overfitting. For dataset augmentation, we used three distinct GAN architectures—namely simple GAN, CycleGAN, and DCGAN. Our experiments demonstrated that models utilizing the GAN-augmented dataset generally outperformed those relying on the non-augmented dataset. Notably, the CycleGAN architecture exhibited the most favorable outcomes, with the MobileNet model achieving an accuracy of 98.54%. These findings underscore the significant potential of GAN models in improving the performance of detection models for rice leaf diseases, suggesting their promising role in the future research within this doma
Automated detection of plant diseases is crucial as it simplifies the task of monitoring large farms and identifies diseases at their early stages to mitigate further plant degradation. Besides the decline in plant he...
详细信息
A multi-secret image sharing (MSIS) scheme facilitates the secure distribution of multiple images among a group of participants. Several MSIS schemes have been proposed with a (n, n) structure that encodes secret...
详细信息
With the popularity of the Internet of Vehicles(IoV), a large amount of data is being generated every day. How to securely share data between the IoV operator and various value-added service providers becomes one of t...
详细信息
With the popularity of the Internet of Vehicles(IoV), a large amount of data is being generated every day. How to securely share data between the IoV operator and various value-added service providers becomes one of the critical issues. Due to its flexible and efficient fine-grained access control feature, Ciphertext-Policy Attribute-Based Encryption(CP-ABE) is suitable for data sharing in IoV. However, there are many flaws in most existing CP-ABE schemes, such as attribute privacy leakage and key misuse. This paper proposes a Traceable and Revocable CP-ABE-based Data Sharing with Partially hidden policy for IoV(TRE-DSP). A partially hidden access structure is adopted to hide sensitive user attribute values, and attribute categories are sent along with the ciphertext to effectively avoid privacy exposure. In addition, key tracking and malicious user revocation are introduced with broadcast encryption to prevent key misuse. Since the main computation task is outsourced to the cloud, the burden of the user side is relatively low. Analysis of security and performance demonstrates that TRE-DSP is more secure and practical for data sharing in IoV.
Internet of Things (IoT) enabled Wireless Sensor Networks (WSNs) is not only constitute an encouraging research domain but also represent a promising industrial trend that permits the development of various IoT-based ...
详细信息
If adversaries were to obtain quantum computers in the future, their massive computing power would likely break existing security schemes. Since security is a continuous process, more substantial security schemes must...
详细信息
Cancer remains a leading cause of mortality worldwide, with early detection and accurate diagnosis critical to improving patient outcomes. While computer-aided diagnosis systems powered by deep learning have shown con...
详细信息
暂无评论