Chest X-ray scans are one of the most often used diagnostic tools for identifying chest diseases. However, identifying diseases in X-ray images needs experienced technicians and is frequently noted as a time-consuming...
详细信息
In the digital world, text data is produced in an unstructured manner across various communication channels. Extracting valuable information from such data with security is crucial and requires the development of tech...
详细信息
The recent advancements in deep convolutional neural networks have shown significant promise in the domain of road scene parsing. Nevertheless, the existing works focus primarily on freespace detection, with little at...
详细信息
The recent advancements in deep convolutional neural networks have shown significant promise in the domain of road scene parsing. Nevertheless, the existing works focus primarily on freespace detection, with little attention given to hazardous road defects that could compromise both driving safety and comfort. In this article, we introduce RoadFormer, a novel Transformer-based data-fusion network developed for road scene parsing. RoadFormer utilizes a duplex encoder architecture to extract heterogeneous features from both RGB images and surface normal information. The encoded features are subsequently fed into a novel heterogeneous feature synergy block for effective feature fusion and recalibration. The pixel decoder then learns multi-scale long-range dependencies from the fused and recalibrated heterogeneous features, which are subsequently processed by a Transformer decoder to produce the final semantic prediction. Additionally, we release SYN-UDTIRI, the first large-scale road scene parsing dataset that contains over 10,407 RGB images, dense depth images, and the corresponding pixel-level annotations for both freespace and road defects of different shapes and sizes. Extensive experimental evaluations conducted on our SYN-UDTIRI dataset, as well as on three public datasets, including KITTI road, CityScapes, and ORFD, demonstrate that RoadFormer outperforms all other state-of-the-art networks for road scene parsing. Specifically, RoadFormer ranks first on the KITTI road benchmark. Our source code, created dataset, and demo video are publicly available at ***/RoadFormer. IEEE
This paper introduces the African Bison Optimization(ABO)algorithm,which is based on biological *** is inspired by the survival behaviors of the African bison,including foraging,bathing,jousting,mating,and *** foragin...
详细信息
This paper introduces the African Bison Optimization(ABO)algorithm,which is based on biological *** is inspired by the survival behaviors of the African bison,including foraging,bathing,jousting,mating,and *** foraging behavior prompts the bison to seek a richer food source for *** bison find a food source,they stick around for a while by bathing *** jousting behavior makes bison stand out in the population,then the winner gets the chance to produce offspring in the mating *** eliminating behavior causes the old or injured bison to be weeded out from the herd,thus maintaining the excellent *** above behaviors are translated into ABO by mathematical *** assess the reliability and performance of ABO,it is evaluated on a diverse set of 23 benchmark functions and applied to solve five practical engineering problems with *** findings from the simulation demonstrate that ABO exhibits superior and more competitive performance by effectively managing the trade-off between exploration and exploitation when compared with the other nine popular metaheuristics algorithms.
IoT is one of the most significant technological breakthroughs and promises a higher level of connection and control in the future. The IoT network continues to expand rapidly, and the IoT ecosystem comprises millions...
详细信息
The boundaries and regions between individual classes in biomedical image classification are hazy and overlapping. These overlapping features make predicting the correct classification result for biomedical imaging da...
详细信息
The boundaries and regions between individual classes in biomedical image classification are hazy and overlapping. These overlapping features make predicting the correct classification result for biomedical imaging data a difficult diagnostic task. Thus, in precise classification, it is frequently necessary to obtain all necessary information before making a decision. This paper presents a novel deep-layered design architecture based on Neuro-Fuzzy-Rough intuition to predict hemorrhages using fractured bone images and head CT scans. To deal with data uncertainty, the proposed architecture design employs a parallel pipeline with rough-fuzzy layers. In this case, the rough-fuzzy function functions as a membership function, incorporating the ability to process rough-fuzzy uncertainty information. It not only improves the deep model's overall learning process, but it also reduces feature dimensions. The proposed architecture design improves the model's learning and self-adaptation capabilities. In experiments, the proposed model performed well, with training and testing accuracies of 96.77% and 94.52%, respectively, in detecting hemorrhages using fractured head images. The comparative analysis shows that the model outperforms existing models by an average of 2.6$\pm$0.90% on various performance metrics. IEEE
As cryptocurrencies become more popular as investment vehicles, bitcoin draws interest from businesses, consumers, and computer scientists all across the world. Bitcoin is a computer file stored in digital wallet appl...
详细信息
Chest X-ray image classification is a key study topic, and in order to increase performance and accuracy, the efficiency of vision transformers for this task has been examined. However, imbalanced datasets pose a sign...
详细信息
Air pollution is a significant threat to human health and the environment. Accurate air quality forecasting is essential for effective mitigation strategies, including public health advisories, emission control measur...
详细信息
Robots are increasingly being deployed in densely populated environments, such as homes, hotels, and office buildings, where they rely on explicit instructions from humans to perform tasks. However, complex tasks ofte...
详细信息
Robots are increasingly being deployed in densely populated environments, such as homes, hotels, and office buildings, where they rely on explicit instructions from humans to perform tasks. However, complex tasks often require multiple instructions and prolonged monitoring, which can be time-consuming and demanding for users. Despite this, there is limited research on enabling robots to autonomously generate tasks based on real-life scenarios. Advanced intelligence necessitates robots to autonomously observe and analyze their environment and then generate tasks autonomously to fulfill human requirements without explicit commands. To address this gap, we propose the autonomous generation of navigation tasks using natural language dialogues. Specifically, a robot autonomously generates tasks by analyzing dialogues involving multiple persons in a real office environment to facilitate the completion of item transportation between various *** propose the leveraging of a large language model(LLM) through chain-of-thought prompting to generate a navigation sequence for a robot from dialogues. We also construct a benchmark dataset consisting of 625 multiperson dialogues using the generation capability of LLMs. Evaluation results and real-world experiments in an office building demonstrate the effectiveness of the proposed method.
暂无评论