In the present study, combustion-synthesized TiO2 nanoparticles were wet impregnated with Ni, Co, and Ni-Co, respectively. The photocatalytic performance of synthesized catalysts was evaluated against Malachite Green ...
详细信息
An authenticated manager must reinforce huge applications and operating systems, keeping information in the cloud while resisting potentially unreliable service providers. This article explores the presence of multipl...
详细信息
The patient health prediction system is the most critical study in medical research. Several prediction models exist to predict the patient's health condition. However, a relevant result was not attained because o...
详细信息
Efficient highway lighting is crucial for ensuring road safety and reducing energy consumption and costs. Traditional highway lighting systems rely on timers or simple photosensors, leading to inefficient operation by...
详细信息
The increasing number of electronic transactions on the Internet has given rise to the design of recommendation systems. The main objective of these systems is to give recommendations to the users about the items (i.e...
详细信息
We consider the online convex optimization (OCO) problem with quadratic and linear switching cost when at time t only gradient information for functions fτ, τ 16(Lµ+5) for the quadratic switching cost, and also...
详细信息
We consider the online convex optimization (OCO) problem with quadratic and linear switching cost when at time t only gradient information for functions fτ, τ 16(Lµ+5) for the quadratic switching cost, and also show the bound to be order-wise tight in terms of L, µ. In addition, we show that the competitive ratio of any online algorithm is at least max{Ω(L), Ω(pLµ )} when the switching cost is quadratic. For the linear switching cost, the competitive ratio of the OMGD algorithm is shown to depend on both the path length and the squared path length of the problem instance, in addition to L, µ, and is shown to be order-wise, the best competitive ratio any online algorithm can achieve. Copyright is held by author/owner(s).
Advancements in cloud computing and virtualization technologies have revolutionized Enterprise Application Development with innovative ways to design and develop complex *** Architecture is one of the recent technique...
详细信息
Advancements in cloud computing and virtualization technologies have revolutionized Enterprise Application Development with innovative ways to design and develop complex *** Architecture is one of the recent techniques in which Enterprise Systems can be developed as fine-grained smaller components and deployed *** methodology brings numerous benefits like scalability,resilience,flexibility in development,faster time to market,*** the advantages;Microservices bring some challenges *** microservices need to be invoked one by one as a *** most applications,more than one chain of microservices runs in parallel to complete a particular requirement To complete a user’s *** results in competition for resources and the need for more inter-service communication among the services,which increases the overall latency of the application.A new approach has been proposed in this paper to handle a complex chain of microservices and reduce the latency of user requests.A machine learning technique is followed to predict the weighting time of different types of *** communication time among services distributed among different physical machines are estimated based on that and obtained insights are applied to an algorithm to calculate their priorities dynamically and select suitable service instances to minimize the latency based on the shortest queue waiting *** were done for both interactive as well as non interactive workloads to test the effectiveness of the *** approach has been proved to be very effective in reducing latency in the case of long service chains.
Delay Tolerant Networks (DTNs) have the ability to make communication possible without end-to-end connectivity using store-carry-forward technique. Efficient data dissemination in DTNs is very challenging problem due ...
详细信息
In today's rapidly evolving network landscape, cybersecurity has become increasingly crucial. However, wireless sensor networks face unique challenges due to their limited resources and diverse composition, high c...
详细信息
Owing to massive technological developments in Internet of Things(IoT)and cloud environment,cloud computing(CC)offers a highly flexible heterogeneous resource pool over the network,and clients could exploit various re...
详细信息
Owing to massive technological developments in Internet of Things(IoT)and cloud environment,cloud computing(CC)offers a highly flexible heterogeneous resource pool over the network,and clients could exploit various resources on *** IoT-enabled models are restricted to resources and require crisp response,minimum latency,and maximum bandwidth,which are outside the *** was handled as a resource-rich solution to aforementioned *** high delay reduces the performance of the IoT enabled cloud platform,efficient utilization of task scheduling(TS)reduces the energy usage of the cloud infrastructure and increases the income of service provider via minimizing processing time of user ***,this article concentration on the design of an oppositional red fox optimization based task scheduling scheme(ORFOTSS)for IoT enabled cloud *** presented ORFO-TSS model resolves the problem of allocating resources from the IoT based cloud *** achieves the makespan by performing optimum TS procedures with various aspects of incoming *** designing of ORFO-TSS method includes the idea of oppositional based learning(OBL)as to traditional RFO approach in enhancing their efficiency.A wide-ranging experimental analysis was applied on the CloudSim *** experimental outcome highlighted the efficacy of the ORFO-TSS technique over existing approaches.
暂无评论