In recent times, there has been a notable surge in the exploration of studying human body movements through the utilization of inertial measurement units that can be worn. This trend stems from its substantial impact ...
详细信息
When processing large amounts of data, proteins play a key role in biological processes. Protein structure prediction relies on a procedure called relevant feature selection. To accomplish classification, a feature se...
详细信息
The rapid expansion of autonomous technologies, the rise of computer vision, and edge computing present exciting opportunities in healthcare monitoring systems. Fall prevention is especially important for the elderly ...
详细信息
A mobile ad hoc network (MANET) is an independent wireless temporary network established by employing a set of mobile nodes (i.e. laptops, smartphones, iPods, etc.) appropriate for the environment in which the network...
详细信息
A mobile ad hoc network (MANET) is an independent wireless temporary network established by employing a set of mobile nodes (i.e. laptops, smartphones, iPods, etc.) appropriate for the environment in which the network infrastructures are not fixed. The most common problems faced by MANET are energy efficiency, high energy consumption, low network lifetime as well as high traffic overhead which create an impact on overall network topology. Hence, it is necessary to provide an energy-effective CH election to take steps against such issues. Therefore, this paper proposes a novel model to enhance the network lifetime and energy efficiency by performing a routing strategy in MANET. In this paper, an optimal CH is selected by proposing a novel Fuzzy Marine White Shark optimization (FMWSO) algorithm which is obtained by integrating fuzzy operation with two optimization algorithms namely the marine predator algorithm and white shark optimizer. The proposed approach comprises three diverse stages namely Generation of data, Cluster Generation and CH selection. A novel FMWSO algorithm is proposed in such a way to determine the CH selection in MANET thereby enhancing the network topology, network lifetime and minimizing the overhead rate, and energy consumption. Finally, the performance of the proposed FMWSO approach is compared with various other existing techniques to determine the effectiveness of the system. The proposed FMWSO approach consumes minimum energy of 0.62 mJ which is lower than other approaches.
Researchers have recently created several deep learning strategies for various tasks, and facial recognition has made remarkable progress in employing these techniques. Face recognition is a noncontact, nonobligatory,...
详细信息
Researchers have recently created several deep learning strategies for various tasks, and facial recognition has made remarkable progress in employing these techniques. Face recognition is a noncontact, nonobligatory, acceptable, and harmonious biometric recognition method with a promising national and social security future. The purpose of this paper is to improve the existing face recognition algorithm, investigate extensive data-driven face recognition methods, and propose a unique automated face recognition methodology based on generative adversarial networks (GANs) and the center symmetric multivariable local binary pattern (CS-MLBP). To begin, this paper employs the center symmetric multivariant local binary pattern (CS-MLBP) algorithm to extract the texture features of the face, addressing the issue that C2DPCA (column-based two-dimensional principle component analysis) does an excellent job of removing the global characteristics of the face but struggles to process the local features of the face under large samples. The extracted texture features are combined with the international features retrieved using C2DPCA to generate a multifeatured face. The proposed method, GAN-CS-MLBP, syndicates the power of GAN with the robustness of CS-MLBP, resulting in an accurate and efficient face recognition system. Deep learning algorithms, mainly neural networks, automatically extract discriminative properties from facial images. The learned features capture low-level information and high-level meanings, permitting the model to distinguish among dissimilar persons more successfully. To assess the proposed technique’s GAN-CS-MLBP performance, extensive experiments are performed on benchmark face recognition datasets such as LFW, YTF, and CASIA-WebFace. Giving to the findings, our method exceeds state-of-the-art facial recognition systems in terms of recognition accuracy and resilience. The proposed automatic face recognition system GAN-CS-MLBP provides a solid basis for a
Understanding the learner’s requirements and status is important for recommending relevant and appropriate learning materials to the learner in personalized learning. For this purpose, the learning recommendatio...
详细信息
The use of machine learning models in intrusion detection systems (IDSs) takes more time to build the model with many features and degrade the performance. The present paper proposes an ensemble of filter feature sele...
详细信息
According to the World Health Organisation (WHO), the COVID-19 virus would infect 83,558,756 persons worldwide in 2020, resulting in 646,949 deaths. In this research, we aim to find the link between the time series da...
详细信息
In serverless computing, the service provider takes full responsibility for function management. However, serverless computing has many challenges regarding data security and function scheduling. To address these chal...
详细信息
Cloud computing (CC) is a cost-effective platform for users to store their data on the internet rather than investing in additional devices for storage. Data deduplication (DD) defines a process of eliminating redunda...
详细信息
暂无评论