Alzheimer's disease is a well-known illness characterized by memory loss and cognitive decline. Since current treatments work best in the early stages, early detection is vital for effective management. The Magnet...
详细信息
Internet of Things (IoT) enabled Wireless Sensor Networks (WSNs) is not only constitute an encouraging research domain but also represent a promising industrial trend that permits the development of various IoT-based ...
详细信息
Reduplication is a highly productive process in Bengali word formation, with significant implications for various natural language processing (NLP) applications, such as parts-of-speech tagging and sentiment analysis....
详细信息
Foundation models(FMs) [1] have revolutionized software development and become the core components of large software systems. This paradigm shift, however, demands fundamental re-imagining of software engineering theo...
Foundation models(FMs) [1] have revolutionized software development and become the core components of large software systems. This paradigm shift, however, demands fundamental re-imagining of software engineering theories and methodologies [2]. Instead of replacing existing software modules implemented by symbolic logic, incorporating FMs' capabilities to build software systems requires entirely new modules that leverage the unique capabilities of ***, while FMs excel at handling uncertainty, recognizing patterns, and processing unstructured data, we need new engineering theories that support the paradigm shift from explicitly programming and maintaining user-defined symbolic logic to creating rich, expressive requirements that FMs can accurately perceive and implement.
Most optimization problems of practical significance are typically solved by highly configurable parameterized *** achieve the best performance on a problem instance,a trial-and-error configuration process is required...
详细信息
Most optimization problems of practical significance are typically solved by highly configurable parameterized *** achieve the best performance on a problem instance,a trial-and-error configuration process is required,which is very costly and even prohibitive for problems that are already computationally intensive,*** problems associated with machine learning *** the past decades,many studies have been conducted to accelerate the tedious configuration process by learning from a set of training *** article refers to these studies as learn to optimize and reviews the progress achieved.
Sentiment analysis has been widely used in various fields of social media, education, and business. Specifically, in the education domain, the usage of sentiment analysis is difficult due to the huge amount of informa...
详细信息
Recent years have witnessed notable progressions in facial recognition technology which have been led by the inception of deep learning models-primarily Siamese Neural Networks. This article delves into the use of Sia...
详细信息
Cassava is a vital staple crop in numerous tropical countries, to enhance plant disease detection using deep learning architecture including ResNet, EfficientNet, Incetion V3 and simple CNN. By levering these advance ...
详细信息
Human motion detection is a critical application of biomechanics, leveraging computer vision to analyse and interpret human activities. This technology is essential across various fields, including sports training, wh...
详细信息
Recommender systems are effective in mitigating information overload, yet the centralized storage of user data raises significant privacy concerns. Cross-user federated recommendation(CUFR) provides a promising distri...
详细信息
Recommender systems are effective in mitigating information overload, yet the centralized storage of user data raises significant privacy concerns. Cross-user federated recommendation(CUFR) provides a promising distributed paradigm to address these concerns by enabling privacy-preserving recommendations directly on user devices. In this survey, we review and categorize current progress in CUFR, focusing on four key aspects: privacy, security, accuracy, and efficiency. Firstly,we conduct an in-depth privacy analysis, discuss various cases of privacy leakage, and then review recent methods for privacy protection. Secondly, we analyze security concerns and review recent methods for untargeted and targeted *** untargeted attack methods, we categorize them into data poisoning attack methods and parameter poisoning attack methods. For targeted attack methods, we categorize them into user-based methods and item-based methods. Thirdly,we provide an overview of the federated variants of some representative methods, and then review the recent methods for improving accuracy from two categories: data heterogeneity and high-order information. Fourthly, we review recent methods for improving training efficiency from two categories: client sampling and model compression. Finally, we conclude this survey and explore some potential future research topics in CUFR.
暂无评论