Recently, deep learning has been widely employed across various domains. The Convolution Neural Network (CNN), a popular deep learning algorithm, has been successfully utilized in object recognition tasks, such as fac...
详细信息
The prompt spread of COVID-19 has emphasized the necessity for effective and precise diagnostic *** this article,a hybrid approach in terms of datasets as well as the methodology by utilizing a previously unexplored d...
详细信息
The prompt spread of COVID-19 has emphasized the necessity for effective and precise diagnostic *** this article,a hybrid approach in terms of datasets as well as the methodology by utilizing a previously unexplored dataset obtained from a private hospital for detecting COVID-19,pneumonia,and normal conditions in chest X-ray images(CXIs)is proposed coupled with Explainable Artificial Intelligence(XAI).Our study leverages less preprocessing with pre-trained cutting-edge models like InceptionV3,VGG16,and VGG19 that excel in the task of feature *** methodology is further enhanced by the inclusion of the t-SNE(t-Distributed Stochastic Neighbor Embedding)technique for visualizing the extracted image features and Contrast Limited Adaptive Histogram Equalization(CLAHE)to improve images before extraction of ***,an AttentionMechanism is utilized,which helps clarify how the modelmakes decisions,which builds trust in artificial intelligence(AI)*** evaluate the effectiveness of the proposed approach,both benchmark datasets and a private dataset obtained with permissions from Jinnah PostgraduateMedical Center(JPMC)in Karachi,Pakistan,are *** 12 experiments,VGG19 showcased remarkable performance in the hybrid dataset approach,achieving 100%accuracy in COVID-19 *** classification and 97%in distinguishing normal ***,across all classes,the approach achieved 98%accuracy,demonstrating its efficiency in detecting COVID-19 and differentiating it fromother chest disorders(Pneumonia and healthy)while also providing insights into the decision-making process of the models.
Skin cancer is the most prevalent cancer globally,primarily due to extensive exposure to Ultraviolet(UV)*** identification of skin cancer enhances the likelihood of effective treatment,as delays may lead to severe tum...
详细信息
Skin cancer is the most prevalent cancer globally,primarily due to extensive exposure to Ultraviolet(UV)*** identification of skin cancer enhances the likelihood of effective treatment,as delays may lead to severe tumor *** study proposes a novel hybrid deep learning strategy to address the complex issue of skin cancer diagnosis,with an architecture that integrates a Vision Transformer,a bespoke convolutional neural network(CNN),and an Xception *** were evaluated using two benchmark datasets,HAM10000 and Skin Cancer *** the HAM10000,the model achieves a precision of 95.46%,an accuracy of 96.74%,a recall of 96.27%,specificity of 96.00%and an F1-Score of 95.86%.It obtains an accuracy of 93.19%,a precision of 93.25%,a recall of 92.80%,a specificity of 92.89%and an F1-Score of 93.19%on the Skin Cancer ISIC *** findings demonstrate that the model that was proposed is robust and trustworthy when it comes to the classification of skin *** addition,the utilization of Explainable AI techniques,such as Grad-CAM visualizations,assists in highlighting the most significant lesion areas that have an impact on the decisions that are made by the model.
Intrusion detection is critical to guaranteeing the safety of the data in the *** though,since Internet commerce has grown at a breakneck pace,network traffic kinds are rising daily,and network behavior characteristic...
详细信息
Intrusion detection is critical to guaranteeing the safety of the data in the *** though,since Internet commerce has grown at a breakneck pace,network traffic kinds are rising daily,and network behavior characteristics are becoming increasingly complicated,posing significant hurdles to intrusion *** challenges in terms of false positives,false negatives,low detection accuracy,high running time,adversarial attacks,uncertain attacks,*** to insecure Intrusion Detection System(IDS).To offset the existing challenge,the work has developed a secure Data Mining Intrusion detection system(DataMIDS)framework using Functional Perturbation(FP)feature selection and Bengio Nesterov Momentum-based Tuned Generative Adversarial Network(BNM-tGAN)attack detection *** data mining-based framework provides shallow learning of features and emphasizes feature engineering as well as ***,the IDS data are analyzed for missing values based on the Marginal Likelihood Fisher Information Matrix technique(MLFIMT)that identifies the relationship among the missing values and attack *** on the analysis,the missing values are classified as Missing Completely at Random(MCAR),Missing at random(MAR),Missing Not at Random(MNAR),and handled according to the ***,categorical features are handled followed by feature scaling using Absolute Median Division based Robust Scalar(AMDRS)and the Handling of the imbalanced *** selection of relevant features is initiated using FP that uses‘3’Feature Selection(FS)techniques i.e.,Inverse Chi Square based Flamingo Search(ICS-FSO)wrapper method,Hyperparameter Tuned Threshold based Decision Tree(HpTT-DT)embedded method,and Xavier Normal Distribution based Relief(XavND-Relief)filter ***,the selected features are trained and tested for detecting attacks using *** Experimental analysis demonstrates that the introduced DataMIDS framework produces an accurate diagnosis about the
Healthcare systems nowadays depend on IoT sensors for sending data over the internet as a common *** ofmedical images is very important to secure patient *** these images consumes a lot of time onedge computing;theref...
详细信息
Healthcare systems nowadays depend on IoT sensors for sending data over the internet as a common *** ofmedical images is very important to secure patient *** these images consumes a lot of time onedge computing;therefore,theuse of anauto-encoder for compressionbefore encodingwill solve such a *** this paper,we use an auto-encoder to compress amedical image before encryption,and an encryption output(vector)is sent out over the *** the other hand,a decoder was used to reproduce the original image back after the vector was received and *** convolutional neural networks were conducted to evaluate our proposed approach:The first one is the auto-encoder,which is utilized to compress and encrypt the images,and the other assesses the classification accuracy of the image after decryption and *** hyperparameters of the encoder were tested,followed by the classification of the image to verify that no critical information was lost,to test the encryption and encoding *** this approach,sixteen hyperparameter permutations are utilized,but this research discusses three main cases in *** first case shows that the combination of Mean Square Logarithmic Error(MSLE),ADAgrad,two layers for the auto-encoder,and ReLU had the best auto-encoder results with a Mean Absolute Error(MAE)=0.221 after 50 epochs and 75%classification with the best result for the classification *** second case shows the reflection of auto-encoder results on the classification results which is a combination ofMean Square Error(MSE),RMSprop,three layers for the auto-encoder,and ReLU,which had the best classification accuracy of 65%,the auto-encoder gives MAE=0.31 after 50 *** third case is the worst,which is the combination of the hinge,RMSprop,three layers for the auto-encoder,and ReLU,providing accuracy of 20%and MAE=0.485.
Autism spectrum disorder(ASD)is a multifaceted neurological developmental condition that manifests in several *** all autistic children remain undiagnosed before the age of *** problems affecting face features are oft...
详细信息
Autism spectrum disorder(ASD)is a multifaceted neurological developmental condition that manifests in several *** all autistic children remain undiagnosed before the age of *** problems affecting face features are often associated with fundamental brain *** facial evolution of newborns with ASD is quite different from that of typically developing *** recognition is very significant to aid families and parents in superstition and *** facial features from typically developing children is an evident manner to detect children analyzed with ***,artificial intelligence(AI)significantly contributes to the emerging computer-aided diagnosis(CAD)of autism and to the evolving interactivemethods that aid in the treatment and reintegration of autistic *** study introduces an Ensemble of deep learning models based on the autism spectrum disorder detection in facial images(EDLM-ASDDFI)*** overarching goal of the EDLM-ASDDFI model is to recognize the difference between facial images of individuals with ASD and normal *** the EDLM-ASDDFI method,the primary level of data pre-processing is involved by Gabor filtering(GF).Besides,the EDLM-ASDDFI technique applies the MobileNetV2 model to learn complex features from the pre-processed *** the ASD detection process,the EDLM-ASDDFI method uses ensemble techniques for classification procedure that encompasses long short-term memory(LSTM),deep belief network(DBN),and hybrid kernel extreme learning machine(HKELM).Finally,the hyperparameter selection of the three deep learning(DL)models can be implemented by the design of the crested porcupine optimizer(CPO)*** extensive experiment was conducted to emphasize the improved ASD detection performance of the EDLM-ASDDFI *** simulation outcomes indicated that the EDLM-ASDDFI technique highlighted betterment over other existing models in terms of numerous performance measures.
The seamless integration of intelligent Internet of Things devices with conventional wireless sensor networks has revolutionized data communication for different applications,such as remote health monitoring,industria...
详细信息
The seamless integration of intelligent Internet of Things devices with conventional wireless sensor networks has revolutionized data communication for different applications,such as remote health monitoring,industrial monitoring,transportation,and smart *** and reliable data routing is one of the major challenges in the Internet of Things network due to the heterogeneity of *** paper presents a traffic-aware,cluster-based,and energy-efficient routing protocol that employs traffic-aware and cluster-based techniques to improve the data delivery in such *** proposed protocol divides the network into clusters where optimal cluster heads are selected among super and normal nodes based on their residual *** protocol considers multi-criteria attributes,i.e.,energy,traffic load,and distance parameters to select the next hop for data delivery towards the base *** performance of the proposed protocol is evaluated through the network simulator *** different traffic rates,number of nodes,and different packet sizes,the proposed protocol outperformed LoRaWAN in terms of end-to-end packet delivery ratio,energy consumption,end-to-end delay,and network *** 100 nodes,the proposed protocol achieved a 13%improvement in packet delivery ratio,10 ms improvement in delay,and 10 mJ improvement in average energy consumption over LoRaWAN.
Clinical auxiliary decision-making is related to life and health of patients, so the deep model needs to extract the personalised representation of patients to ensure high analysis and prediction accuracy;and provide ...
详细信息
Various organizations store data online rather than on physical *** the number of user’s data stored in cloud servers increases,the attack rate to access data from cloud servers also *** researchers worked on differe...
详细信息
Various organizations store data online rather than on physical *** the number of user’s data stored in cloud servers increases,the attack rate to access data from cloud servers also *** researchers worked on different algorithms to protect cloud data from replay *** of the papers used a technique that simultaneously detects a full-message and partial-message replay *** study presents the development of a TKN(Text,Key and Name)cryptographic algorithm aimed at protecting data from replay *** program employs distinct ways to encrypt plain text[P],a user-defined Key[K],and a Secret Code[N].The novelty of the TKN cryptographic algorithm is that the bit value of each text is linked to another value with the help of the proposed algorithm,and the length of the cipher text obtained is twice the length of the original *** the scenario that an attacker executes a replay attack on the cloud server,engages in cryptanalysis,or manipulates any data,it will result in automated modification of all associated values inside the *** mechanism has the benefit of enhancing the detectability of replay ***,the attacker cannot access data not included in any of the papers,regardless of how effective the attack strategy *** the end of paper,the proposed algorithm’s novelty will be compared with different algorithms,and it will be discussed how far the proposed algorithm is better than all other algorithms.
Nowadays, high energy amount is being wasted by computing servers and personal electronic devices, which produce a high amount of carbon dioxide. Thus, it is required to decrease energy usage and pollution. Many appli...
详细信息
暂无评论