The translation of AI-generated brain metastases (BM) segmentation into clinical practice relies heavily on diverse, high-quality annotated medical imaging datasets. The BraTS-METS 2023 challenge has gained momentum f...
详细信息
The translation of AI-generated brain metastases (BM) segmentation into clinical practice relies heavily on diverse, high-quality annotated medical imaging datasets. The BraTS-METS 2023 challenge has gained momentum for testing and benchmarking algorithms using rigorously annotated internationally compiled real-world datasets. This study presents the results of the segmentation challenge and characterizes the challenging cases that impacted the performance of the winning algorithms. Untreated brain metastases on standard anatomic MRI sequences (T1, T2, FLAIR, T1PG) from eight contributed international datasets were annotated in stepwise method: published UNET algorithms, student, neuroradiologist, final approver neuroradiologist. Segmentations were ranked based on lesion-wise Dice and Hausdorff distance (HD95) scores. False positives (FP) and false negatives (FN) were rigorously penalized, receiving a score of 0 for Dice and a fixed penalty of 374 for HD95. The mean scores for the teams were calculated. Eight datasets comprising 1303 studies were annotated, with 402 studies (3076 lesions) released on Synapse as publicly available datasets to challenge competitors. Additionally, 31 studies (139 lesions) were held out for validation, and 59 studies (218 lesions) were used for testing. Segmentation accuracy was measured as rank across subjects, with the winning team achieving a LesionWise mean score of 7.9. The Dice score for the winning team was 0.65 ± 0.25. Common errors among the leading teams included false negatives for small lesions and misregistration of masks in space. The Dice scores and lesion detection rates of all algorithms diminished with decreasing tumor size, particularly for tumors smaller than 100 mm3. In conclusion, algorithms for BM segmentation require further refinement to balance high sensitivity in lesion detection with the minimization of false positives and negatives. The BraTS-METS 2023 challenge successfully curated well-annotated, diverse d
Standardising the representation of biomedical knowledge among all researchers is an insurmountable task, hindering the effectiveness of many computational methods. To facilitate harmonisation and interoperability des...
详细信息
At the Unit Laka Lantas Polres Lhokseumawe determining accident-prone areas on roads in Lhokseumawe still using manual systems. Determination of accident-prone areas are less effective because the police Unit Laka Lan...
详细信息
Uncertainty quantification (UQ) is a vital step in using mathematical models and simulations to take decisions. The field of cardiac simulation has begun to explore and adopt UQ methods to characterise uncertainty in ...
详细信息
The emergence of SARS-CoV in 2002 and SARS-CoV-2 in 2019 led to increased sampling of sarbecoviruses circulating in horseshoe bats. Employing phylogenetic inference while accounting for recombination of bat sarbecovir...
详细信息
Deep learning (DL) models have provided state-of-the-art performance in various medical imaging benchmarking challenges, including the Brain Tumor Segmentation (BraTS) challenges. However, the task of focal pathology ...
详细信息
The transfer of land has an impact on the decreasing of the agricultural land area, so it is necessary to plan the right cropping pattern as an effort to increase the productivity of agricultural cultivation. Also, Cl...
详细信息
A myriad of algorithms for the automatic analysis of brain MR images is available to support clinicians in their decision-making. For brain tumor patients, the image acquisition time series typically starts with an al...
详细信息
暂无评论