Facial expression recognition is a challenging task when neural network is applied to pattern recognition. Most of the current recognition research is based on single source facial data, which generally has the disadv...
详细信息
Malware attacks on Windows machines pose significant cybersecurity threats,necessitating effective detection and prevention *** machine learning classifiers have emerged as promising tools for malware ***,there remain...
详细信息
Malware attacks on Windows machines pose significant cybersecurity threats,necessitating effective detection and prevention *** machine learning classifiers have emerged as promising tools for malware ***,there remains a need for comprehensive studies that compare the performance of different classifiers specifically for Windows malware *** this gap can provide valuable insights for enhancing cybersecurity *** numerous studies have explored malware detection using machine learning techniques,there is a lack of systematic comparison of supervised classifiers for Windows malware *** the relative effectiveness of these classifiers can inform the selection of optimal detection methods and improve overall security *** study aims to bridge the research gap by conducting a comparative analysis of supervised machine learning classifiers for detecting malware on Windows *** objectives include Investigating the performance of various classifiers,such as Gaussian Naïve Bayes,K Nearest Neighbors(KNN),Stochastic Gradient Descent Classifier(SGDC),and Decision Tree,in detecting Windows *** the accuracy,efficiency,and suitability of each classifier for real-world malware detection *** the strengths and limitations of different classifiers to provide insights for cybersecurity practitioners and *** recommendations for selecting the most effective classifier for Windows malware detection based on empirical *** study employs a structured methodology consisting of several phases:exploratory data analysis,data preprocessing,model training,and *** data analysis involves understanding the dataset’s characteristics and identifying preprocessing *** preprocessing includes cleaning,feature encoding,dimensionality reduction,and optimization to prepare the data for *** training utilizes various
A Brain Tumors are highly dangerous illnesses that significantly reduce the life expectancy of patients. The classification of brain tumors plays a crucial role in clinical diagnosis and effective treatment. The misdi...
详细信息
A Brain Tumors are highly dangerous illnesses that significantly reduce the life expectancy of patients. The classification of brain tumors plays a crucial role in clinical diagnosis and effective treatment. The misdiagnosis of brain tumors will result in wrong medical intercession and reduce chance of survival of patients Precisely diagnosing brain tumors is of utmost importance for devising suitable treatment plans that can effectively cure and improve the quality of life for patients afflicted with this condition. To tackle this challenge, present a framework that harnesses deep convolutional layers to automatically extract crucial and resilient features from the input data. Systems that use computers and with the help of convolutional neural networks have provided huge success stories in early detection of tumors. In our framework, utilize VGG19 model combined with fuzzy logic type-2 where used fuzzy logic type-2 that applied to enhancement the images brain where Type-2 fuzzy logic better handles uncertainty in medical images, improving the interpretability of image enhancement by managing noise and subtle differences with greater precision than Type-1 fuzzy logic for MRI images often contain ambiguous or low-contrast areas where noise, lighting conditions different and greatly improve accuracy. while used the VGG19 architecture to feature extraction and classify Tumor and non- Tumor. This approach enhances the accuracy of tumors classification, aiding in the development of targeted treatment strategies for patients. The method is trained on the Br35H dataset, resulting in a training accuracy of 0.9983 % and Train loss of 0.2118 while the validation accuracy of 0.9953 % validation loss of 0.2264. This demonstrates effective pattern learning and generalization capabilities. The model achieves outstanding accuracy, with a best accuracy for the model of 0.9983 %, While the test accuracy of the model reached of 99 %, and both of sensitivity and specificity at 0.9967
Cancer remains a leading cause of mortality worldwide, with early detection and accurate diagnosis critical to improving patient outcomes. While computer-aided diagnosis systems powered by deep learning have shown con...
详细信息
With the rapid expansion of computer networks and information technology, ensuring secure data transmission is increasingly vital—especially for image data, which often contains sensitive information. This research p...
详细信息
Data hierarchy,as a hidden property of data structure,exists in a wide range of machine learning applications.A common practice to classify such hierarchical data is first to encode the data in the Euclidean space,and...
详细信息
Data hierarchy,as a hidden property of data structure,exists in a wide range of machine learning applications.A common practice to classify such hierarchical data is first to encode the data in the Euclidean space,and then train a Euclidean ***,such a paradigm leads to a performance drop due to distortion of data embedding in the Euclidean *** relieve this issue,hyperbolic geometry is investigated as an alternative space to encode the hierarchical data for its higher ability to capture the hierarchical *** methods cannot explore the full potential of the hyperbolic geometry,in the sense that such methods define the hyperbolic operations in the tangent plane,causing the distortion of data *** this paper,we develop two novel kernel formulations in the hyperbolic space,with one being positive definite(PD)and another one being indefinite,to solve the classification tasks in hyperbolic *** PD one is defined via mapping the hyperbolic data to the Drury-Arveson(DA)space,which is a special reproducing kernel Hilbert space(RKHS).To further increase the discrimination of the classifier,an indefinite kernel is further defined in the Krein ***,we design a 2-layer nested indefinite kernel which first maps hyperbolic data into the DA spaces,followed by a mapping from the DA spaces to the Krein *** experiments on real-world datasets demonstrate the superiority ofthe proposed kernels.
Thedeployment of the Internet of Things(IoT)with smart sensors has facilitated the emergence of fog computing as an important technology for delivering services to smart environments such as campuses,smart cities,and ...
详细信息
Thedeployment of the Internet of Things(IoT)with smart sensors has facilitated the emergence of fog computing as an important technology for delivering services to smart environments such as campuses,smart cities,and smart transportation *** computing tackles a range of challenges,including processing,storage,bandwidth,latency,and reliability,by locally distributing secure information through end *** of endpoints,fog nodes,and back-end cloud infrastructure,it provides advanced capabilities beyond traditional cloud *** smart environments,particularly within smart city transportation systems,the abundance of devices and nodes poses significant challenges related to power consumption and system *** address the challenges of latency,energy consumption,and fault tolerance in these environments,this paper proposes a latency-aware,faulttolerant framework for resource scheduling and data management,referred to as the FORD framework,for smart cities in fog *** framework is designed to meet the demands of time-sensitive applications,such as those in smart transportation *** FORD framework incorporates latency-aware resource scheduling to optimize task execution in smart city environments,leveraging resources from both fog and cloud *** simulation-based executions,tasks are allocated to the nearest available nodes with minimum *** the event of execution failure,a fault-tolerantmechanism is employed to ensure the successful completion of *** successful execution,data is efficiently stored in the cloud data center,ensuring data integrity and reliability within the smart city ecosystem.
Crop yield Prediction based on environmental, soil, water, and crop parameters has been an active area of research in agriculture. Many studies have shown that these parameters can have a significant impact on crop yi...
详细信息
In the enormous field of Natural Language Processing (NLP), deciphering the intended significance of a word among a multitude of possibilities is referred to as word sense disambiguation. This process is essential for...
详细信息
Heart monitoring improves life ***(ECGs or EKGs)detect heart *** learning algorithms can create a few ECG diagnosis processing *** first method uses raw ECG and time-series *** second method classifies the ECG by pati...
详细信息
Heart monitoring improves life ***(ECGs or EKGs)detect heart *** learning algorithms can create a few ECG diagnosis processing *** first method uses raw ECG and time-series *** second method classifies the ECG by patient *** third technique translates ECG impulses into Q waves,R waves and S waves(QRS)features using richer *** ECG signals vary naturally between humans and activities,we will combine the three feature selection methods to improve classification accuracy and *** using all three approaches have not been examined till *** researchers found that Machine Learning(ML)techniques can improve ECG *** study will compare popular machine learning techniques to evaluate ECG *** algorithms—Support Vector Machine(SVM),Decision Tree,Naive Bayes,and Neural Network—compare categorization *** plus prior knowledge has the highest accuracy(99%)of the four ML *** characteristics failed to identify signals without chaos *** 99.8%classification accuracy,the Decision Tree technique outperformed all previous experiments.
暂无评论