The recent advancements in deep convolutional neural networks have shown significant promise in the domain of road scene parsing. Nevertheless, the existing works focus primarily on freespace detection, with little at...
详细信息
The recent advancements in deep convolutional neural networks have shown significant promise in the domain of road scene parsing. Nevertheless, the existing works focus primarily on freespace detection, with little attention given to hazardous road defects that could compromise both driving safety and comfort. In this article, we introduce RoadFormer, a novel Transformer-based data-fusion network developed for road scene parsing. RoadFormer utilizes a duplex encoder architecture to extract heterogeneous features from both RGB images and surface normal information. The encoded features are subsequently fed into a novel heterogeneous feature synergy block for effective feature fusion and recalibration. The pixel decoder then learns multi-scale long-range dependencies from the fused and recalibrated heterogeneous features, which are subsequently processed by a Transformer decoder to produce the final semantic prediction. Additionally, we release SYN-UDTIRI, the first large-scale road scene parsing dataset that contains over 10,407 RGB images, dense depth images, and the corresponding pixel-level annotations for both freespace and road defects of different shapes and sizes. Extensive experimental evaluations conducted on our SYN-UDTIRI dataset, as well as on three public datasets, including KITTI road, CityScapes, and ORFD, demonstrate that RoadFormer outperforms all other state-of-the-art networks for road scene parsing. Specifically, RoadFormer ranks first on the KITTI road benchmark. Our source code, created dataset, and demo video are publicly available at ***/RoadFormer. IEEE
Implementing defensive deception in the cloud is promising to proactively counter reconnaissance attack. This technique presents decoys to camouflage cloud assets and distracts attack resource. However,the major chall...
详细信息
Implementing defensive deception in the cloud is promising to proactively counter reconnaissance attack. This technique presents decoys to camouflage cloud assets and distracts attack resource. However,the major challenge is to develop an effective deception strategy to orchestrate digital decoys. To address this issue, we propose a deep reinforcement learning(DRL)-based defensive deception framework. First,we formulate a utility function, which mathematically models underlying threats associated with common vulnerabilities among virtual machines in the cloud. Then, we customize training interfaces and the neural networks for a DRL agent. The reward function reflects the effectiveness of asset concealment and the waste of attack resources, referring to a comprehensive defense goal. Finally, the well-trained DRL agent generates the optimal defense strategy. It specifies a more granular deception strategy than existing proposals. Simulation results show that the proposed framework leads to a 7.87% average advantage in realizing the comprehensive defense goal. Moreover, it can stably improve the concealment degree of cloud assets up to 20.58%, and increase the attack cost up to 40.40%. This study shows that it is promising to improve cloud security with deception defense and artificial intelligence techniques.
The most prevalent cancer around the world is Skin cancer (SC). Clinical assessment of skin lesions is essential to evaluate the features of the disease;but it is limited by the variety of interpretations and long tim...
详细信息
The study of gaze tracking is a significant research area in computer vision. It focuses on real-world applications and the interface between humans and computers. Recently, new eye-tracking applications have boosted ...
详细信息
To enhance the efficiency and accuracy of environmental perception for autonomous vehicles,we propose GDMNet,a unified multi-task perception network for autonomous driving,capable of performing drivable area segmentat...
详细信息
To enhance the efficiency and accuracy of environmental perception for autonomous vehicles,we propose GDMNet,a unified multi-task perception network for autonomous driving,capable of performing drivable area segmentation,lane detection,and traffic object ***,in the encoding stage,features are extracted,and Generalized Efficient Layer Aggregation Network(GELAN)is utilized to enhance feature extraction and gradient ***,in the decoding stage,specialized detection heads are designed;the drivable area segmentation head employs DySample to expand feature maps,the lane detection head merges early-stage features and processes the output through the Focal Modulation Network(FMN).Lastly,the Minimum Point Distance IoU(MPDIoU)loss function is employed to compute the matching degree between traffic object detection boxes and predicted boxes,facilitating model training *** results on the BDD100K dataset demonstrate that the proposed network achieves a drivable area segmentation mean intersection over union(mIoU)of 92.2%,lane detection accuracy and intersection over union(IoU)of 75.3%and 26.4%,respectively,and traffic object detection recall and mAP of 89.7%and 78.2%,*** detection performance surpasses that of other single-task or multi-task algorithm models.
Load balancing and scheduling are essential components of cloud computing that aim to optimize resource allocation and utilization. In a cloud environment, multiple virtual machines and applications compete for shared...
详细信息
Blockchain technology provides a technical solution for the challenges faced by e-government, such as low efficiency, excessive energy consumption, and lack of trust mechanisms. It can promote the establishment of a m...
详细信息
In modern society,an increasing number of occasions need to effectively verify people's *** is the most ef-fective technology for personal *** research on automated biometrics recognition mainly started in the 196...
详细信息
In modern society,an increasing number of occasions need to effectively verify people's *** is the most ef-fective technology for personal *** research on automated biometrics recognition mainly started in the 1960s and *** the following 50 years,the research and application of biometrics have achieved fruitful *** 2014-2015,with the successful applications of some emerging information technologies and tools,such as deep learning,cloud computing,big data,mobile communication,smartphones,location-based services,blockchain,new sensing technology,the Internet of Things and federated learning,biometric technology entered a new development ***,taking 2014-2015 as the time boundary,the development of biometric technology can be divided into two *** addition,according to our knowledge and understanding of biometrics,we fur-ther divide the development of biometric technology into three phases,i.e.,biometrics 1.0,2.0 and *** 1.0 is the primary de-velopment phase,or the traditional development *** 2.0 is an explosive development phase due to the breakthroughs caused by some emerging information *** present,we are in the development phase of biometrics *** 3.0 is the future development phase of *** the biometrics 3.0 phase,biometric technology will be fully mature and can meet the needs of various *** 1.0 is the initial phase of the development of biometric technology,while biometrics 2.0 is the advanced *** this paper,we provide a brief review of biometrics ***,the concept of biometrics 2.0 is defined,and the architecture of biometrics 2.0 is *** particular,the application architecture of biometrics 2.0 in smart cities is *** challenges and perspectives of biometrics 2.0 are also discussed.
The Internet of Things(IoT)has taken the interconnected world by *** to their immense applicability,IoT devices are being scaled at exponential proportions ***,very little focus has been given to securing such *** the...
详细信息
The Internet of Things(IoT)has taken the interconnected world by *** to their immense applicability,IoT devices are being scaled at exponential proportions ***,very little focus has been given to securing such *** these devices are constrained in numerous aspects,it leaves network designers and administrators with no choice but to deploy them with minimal or no security at *** have seen distributed denial-ofservice attacks being raised using such devices during the infamous Mirai botnet attack in *** we propose a lightweight authentication protocol to provide proper access to such *** have considered several aspects while designing our authentication protocol,such as scalability,movement,user registration,device registration,*** define the architecture we used a three-layered model consisting of cloud,fog,and edge *** have also proposed several pre-existing cipher suites based on post-quantum cryptography for evaluation and *** also provide a fail-safe mechanism for a situation where an authenticating server might fail,and the deployed IoT devices can self-organize to keep providing services with no human *** find that our protocol works the fastest when using ring learning with *** prove the safety of our authentication protocol using the automated validation of Internet security protocols and applications *** conclusion,we propose a safe,hybrid,and fast authentication protocol for authenticating IoT devices in a fog computing environment.
In the data retrieval process of the Data recommendation system,the matching prediction and similarity identification take place a major role in the *** that,there are several methods to improve the retrieving process...
详细信息
In the data retrieval process of the Data recommendation system,the matching prediction and similarity identification take place a major role in the *** that,there are several methods to improve the retrieving process with improved accuracy and to reduce the searching ***,in the data recommendation system,this type of data searching becomes complex to search for the best matching for given query data and fails in the accuracy of the query recommendation *** improve the performance of data validation,this paper proposed a novel model of data similarity estimation and clustering method to retrieve the relevant data with the best matching in the big data *** this paper advanced model of the Logarithmic Directionality Texture Pattern(LDTP)method with a Metaheuristic Pattern Searching(MPS)system was used to estimate the similarity between the query data in the entire *** overall work was implemented for the application of the data recommendation *** are all indexed and grouped as a cluster to form a paged format of database structure which can reduce the computation time while at the searching ***,with the help of a neural network,the relevancies of feature attributes in the database are predicted,and the matching index was sorted to provide the recommended data for given query *** was achieved by using the Distributional Recurrent Neural Network(DRNN).This is an enhanced model of Neural Network technology to find the relevancy based on the correlation factor of the feature *** training process of the DRNN classifier was carried out by estimating the correlation factor of the attributes of the *** are formed as clusters and paged with proper indexing based on the MPS parameter of similarity *** overall performance of the proposed work can be evaluated by varying the size of the training database by 60%,70%,and 80%.The parameters that are considered for performance analysis are Precision
暂无评论