The methodologies based on neural networks are substantial to accomplish sentiment analysis in the Social Internet of Things (SIoT). With social media sentiment analysis, significant insights can produce efficient and...
详细信息
The gait abnormality may be the cause of various diseases like foot drop, lower back trembling, and osteoarthritis in the human body. The causes may affect body performance. The problem may be solved if we notice it b...
详细信息
This paper aimed to propose two algorithms,DA-M and RF-M,of reducing the impact of multipath interference(MPI)on intensity modulation direct detection(IM-DD)systems,particularly for four-level pulse amplitude modulati...
详细信息
This paper aimed to propose two algorithms,DA-M and RF-M,of reducing the impact of multipath interference(MPI)on intensity modulation direct detection(IM-DD)systems,particularly for four-level pulse amplitude modulation(PAM4)***-M reduced the fluctuation by averaging the signal in blocks,RF-M estimated MPI by subtracting the decision value of the corresponding block from the mean value of a signal block,and then generated interference-reduced samples by subtracting the interference signal from the product of the corresponding MPI estimate and then weighting *** paper firstly proposed to separate the signal before decision-making into multiple blocks,which significantly reduced the complexity of DA-M and *** results showed that the MPI noise of 28 GBaud IMDD system under the linewidths of 1e5 Hz,1e6 Hz and 10e6 Hz can be effectively alleviated.
The extensive utilization of the Internet in everyday life can be attributed to the substantial accessibility of online services and the growing significance of the data transmitted via the ***,this development has ex...
详细信息
The extensive utilization of the Internet in everyday life can be attributed to the substantial accessibility of online services and the growing significance of the data transmitted via the ***,this development has expanded the potential targets that hackers might *** adequate safeguards,data transmitted on the internet is significantly more susceptible to unauthorized access,theft,or *** identification of unauthorised access attempts is a critical component of cybersecurity as it aids in the detection and prevention of malicious *** research paper introduces a novel intrusion detection framework that utilizes Recurrent Neural Networks(RNN)integrated with Long Short-Term Memory(LSTM)*** proposed model can identify various types of cyberattacks,including conventional and distinctive *** networks,a specific kind of feedforward neural networks,possess an intrinsic memory *** Neural Networks(RNNs)incorporating Long Short-Term Memory(LSTM)mechanisms have demonstrated greater capabilities in retaining and utilizing data dependencies over extended *** such as data types,training duration,accuracy,number of false positives,and number of false negatives are among the parameters employed to assess the effectiveness of these models in identifying both common and unusual *** are utilised in conjunction with LSTM to support human analysts in identifying possible intrusion events,hence enhancing their decision-making capabilities.A potential solution to address the limitations of Shallow learning is the introduction of the Eccentric Intrusion Detection *** model utilises Recurrent Neural Networks,specifically exploiting LSTM *** proposed model achieves detection accuracy(99.5%),generalisation(99%),and false-positive rate(0.72%),the parameters findings reveal that it is superior to state-of-the-art techniques.
This paper proposes a genetic algorithm (GA) to address the non-crossing escape routing problem on printed circuit board (PCB) of grid pin arrays (GPA), a critical challenge in modern electronic circuit *** algorithm ...
详细信息
The Internet of Things (IoT) has become an emerging technology and is expected to connect billions of more devices to the internet in the near future. With time, more and more devices like wearables, intelligent home ...
详细信息
Existing deep learning-based point cloud denoising methods are generally trained in a supervised manner that requires clean data as ground-truth ***,in practice,it is not always feasible to obtain clean point *** this...
详细信息
Existing deep learning-based point cloud denoising methods are generally trained in a supervised manner that requires clean data as ground-truth ***,in practice,it is not always feasible to obtain clean point *** this paper,we introduce a novel unsupervised point cloud denoising method that eliminates the need to use clean point clouds as groundtruth labels during *** demonstrate that it is feasible for neural networks to only take noisy point clouds as input,and learn to approximate and restore their clean *** particular,we generate two noise levels for the original point clouds,requiring the second noise level to be twice the amount of the first noise *** this,we can deduce the relationship between the displacement information that recovers the clean surfaces across the two levels of noise,and thus learn the displacement of each noisy point in order to recover the corresponding clean *** experiments demonstrate that our method achieves outstanding denoising results across various datasets with synthetic and real-world noise,obtaining better performance than previous unsupervised methods and competitive performance to current supervised methods.
This study presents an innovative approach that utilizes neural network-based techniques to address the Ordered Escape Routing (OER) *** OER problem holds a crucial position in integrated circuit design, requiring mul...
详细信息
Human mobility trajectories are fundamental resources for analyzing mobile behaviors in urban computing ***,these trajectories,typically collected from location-based services,often suffer from sparsity and irregulari...
详细信息
Human mobility trajectories are fundamental resources for analyzing mobile behaviors in urban computing ***,these trajectories,typically collected from location-based services,often suffer from sparsity and irregularity in *** support the development of mobile applications,there is a need to recover or estimate missing locations of unobserved time slots in these trajectories at a fine-grained spatial–temporal *** methods for trajectory recovery rely on either individual user trajectories or collective mobility patterns from all *** potential to combine individual and collective patterns for precise trajectory recovery remains ***,current methods are sensitive to the heterogeneous temporal distributions of the observable trajectory *** this paper,we propose CLMove(where CL stands for contrastive learning),a novel model designed to capture multilevel mobility patterns and enhance robustness in trajectory *** features a two-stage location encoder that captures collective and individual mobility *** graph neural network based networks in CLMove explore location transition patterns within a single trajectory and across various user *** also design a trajectory-level contrastive learning task to improve the robustness of the *** experimental results on three representative real-world datasets demonstrate that our CLMove model consistently outperforms state-of-the-art methods in terms of trajectory recovery accuracy.
The evolving field of Alzheimer’s disease(AD)diagnosis has greatly benefited from deep learning models for analyzing brain magnetic resonance(MR)*** study introduces Dynamic GradNet,a novel deep learning model design...
详细信息
The evolving field of Alzheimer’s disease(AD)diagnosis has greatly benefited from deep learning models for analyzing brain magnetic resonance(MR)*** study introduces Dynamic GradNet,a novel deep learning model designed to increase diagnostic accuracy and interpretability for multiclass AD ***,four state-of-the-art convolutional neural network(CNN)architectures,the self-regulated network(RegNet),residual network(ResNet),densely connected convolutional network(DenseNet),and efficient network(EfficientNet),were comprehensively compared via a unified preprocessing pipeline to ensure a fair *** these models,EfficientNet consistently demonstrated superior performance in terms of accuracy,precision,recall,and F1 *** a result,EfficientNetwas selected as the foundation for implementing Dynamic *** GradNet incorporates gradient weighted class activation mapping(GradCAM)into the training process,facilitating dynamic adjustments that focus on critical brain regions associated with early dementia *** adjustments are particularly effective in identifying subtle changes associated with very mild dementia,enabling early diagnosis and *** model was evaluated with the OASIS dataset,which contains greater than 80,000 brain MR images categorized into four distinct stages of AD *** proposed model outperformed the baseline architectures,achieving remarkable generalizability across all *** findingwas especially evident in early-stage dementia detection,where Dynamic GradNet significantly reduced false positives and enhanced classification *** findings highlight the potential of Dynamic GradNet as a robust and scalable approach for AD diagnosis,providing a promising alternative to traditional attention-based *** model’s ability to dynamically adjust spatial focus offers a powerful tool in artificial intelligence(AI)assisted precisionmedicine,particularly in the early det
暂无评论