Distributed and resilient machine learning (DRML) endues next-generation consumer electronics with AI function. Intuitively, AI provides innovative, humanized, convenient applications based on the data extended by nex...
详细信息
Recent events around the world, including the war in Ukraine and the conflict in Gaza have highlighted the effective use of social media as a tool to voice concerns about social issues to create awareness. At the same...
详细信息
Recent events around the world, including the war in Ukraine and the conflict in Gaza have highlighted the effective use of social media as a tool to voice concerns about social issues to create awareness. At the same time, social media has become a fertile ground for spreading misinformation, fake news, and conspiracy theories. Misinformation and conspiracy theories have existed since the existence of mankind. What is new today is the speed by which misinformation can be created, magnified and spread using social media. Efforts to regulate social media and control the widespread spread of misinformation are still lacking due to rapid advances in technology and concerns regarding free speech. One approach to minimizing the impact of misinformation is to focus on social noise as an important factor in magnifying and spreading misinformation. In this paper, we investigate methods of identifying and quantifying social noise using social entropy as a measure of uncertainty and topic modeling. Results from the study have shown a direct relationship between social noise and social entropy. The results have also shown that social noise and social entropy decrease with the use of URLs and rich content (sematic information). Further studies will include the use of machine learning and AI techniques to improve the definition of social news and social entropy. 87 Annual Meeting of the Association for informationscience & Technology | Oct. 25 – 29, 2024 | Calgary, AB, Canada.
Due to the importance of Critical Infrastructure(Cl)in a nation's economy,they have been lucrative targets for cyber *** critical infrastructures are usually Cyber-Physical Systems such as power grids,water,and se...
详细信息
Due to the importance of Critical Infrastructure(Cl)in a nation's economy,they have been lucrative targets for cyber *** critical infrastructures are usually Cyber-Physical Systems such as power grids,water,and sewage treatment facilities,oil and gas pipelines,*** recent times,these systems have suffered from cyber attacks numer-ous *** have been developing cyber security solutions for Cls to avoid lasting *** to standard frameworks,cyber security based on identification,protection,detection,response,and recovery are at the core of these *** of an ongoing attack that escapes standard protection such as firewall,anti-virus,and host/network intrusion detection has gained importance as such attacks eventually affect the physical dynamics of the ***,anomaly detection in physical dynamics proves an effective means to implement *** is one example of anomaly detection in the sensor/actuator data,representing such systems physical *** present EPASAD,which improves the detection technique used in PASAD to detect these micro-stealthy attacks,as our experiments show that PASAD's spherical boundary-based detection fails to *** method EPASAD overcomes this by using Ellipsoid boundaries,thereby tightening the boundaries in various dimen-sions,whereas a spherical boundary treats all dimensions *** validate EPASAD using the dataset produced by the TE-process simulator and the C-town *** results show that EPASAD improves PASAD's average recall by 5.8%and 9.5%for the two datasets,respectively.
"The Siri Bhoovalaya is a seminal work of literature, believed to have been composed approximately a millennium ago, which encompasses diverse information encrypted using numerals of the Kannada language—a predo...
详细信息
Deep learning algorithms have been rapidly incorporated into many different applications due to the increase in computational power and the availability of massive amounts of ***,both deep learning and ensemble learni...
详细信息
Deep learning algorithms have been rapidly incorporated into many different applications due to the increase in computational power and the availability of massive amounts of ***,both deep learning and ensemble learning have been used to recognize underlying structures and patterns from high-level features to make predictions/*** the growth in popularity of deep learning and ensemble learning algorithms,they have received significant attention from both scientists and the industrial community due to their superior ability to learn features from big *** deep learning has exhibited significant performance in enhancing learning generalization through the use of multiple deep learning *** ensemble deep learning has large quantities of training parameters,which results in time and space overheads,it performs much better than traditional ensemble *** deep learning has been successfully used in several areas,such as bioinformatics,finance,and health *** this paper,we review and investigate recent ensemble deep learning algorithms and techniques in health care domains,medical imaging,health care data analytics,genomics,diagnosis,disease prevention,and drug *** cover several widely used deep learning algorithms along with their architectures,including deep neural networks(DNNs),convolutional neural networks(CNNs),recurrent neural networks(RNNs),and generative adversarial networks(GANs).Common healthcare tasks,such as medical imaging,electronic health records,and genomics,are also ***,in this review,the challenges inherent in reducing the burden on the healthcare system are discussed and ***,future directions and opportunities for enhancing healthcare model performance are discussed.
Researchers have recently created several deep learning strategies for various tasks, and facial recognition has made remarkable progress in employing these techniques. Face recognition is a noncontact, nonobligatory,...
详细信息
Researchers have recently created several deep learning strategies for various tasks, and facial recognition has made remarkable progress in employing these techniques. Face recognition is a noncontact, nonobligatory, acceptable, and harmonious biometric recognition method with a promising national and social security future. The purpose of this paper is to improve the existing face recognition algorithm, investigate extensive data-driven face recognition methods, and propose a unique automated face recognition methodology based on generative adversarial networks (GANs) and the center symmetric multivariable local binary pattern (CS-MLBP). To begin, this paper employs the center symmetric multivariant local binary pattern (CS-MLBP) algorithm to extract the texture features of the face, addressing the issue that C2DPCA (column-based two-dimensional principle component analysis) does an excellent job of removing the global characteristics of the face but struggles to process the local features of the face under large samples. The extracted texture features are combined with the international features retrieved using C2DPCA to generate a multifeatured face. The proposed method, GAN-CS-MLBP, syndicates the power of GAN with the robustness of CS-MLBP, resulting in an accurate and efficient face recognition system. Deep learning algorithms, mainly neural networks, automatically extract discriminative properties from facial images. The learned features capture low-level information and high-level meanings, permitting the model to distinguish among dissimilar persons more successfully. To assess the proposed technique’s GAN-CS-MLBP performance, extensive experiments are performed on benchmark face recognition datasets such as LFW, YTF, and CASIA-WebFace. Giving to the findings, our method exceeds state-of-the-art facial recognition systems in terms of recognition accuracy and resilience. The proposed automatic face recognition system GAN-CS-MLBP provides a solid basis for a
With recent advances in technology protecting sensitive healthcare data is challenging. Particularly, one of the most serious issues with medical information security is protecting of medical content, such as the priv...
详细信息
With recent advances in technology protecting sensitive healthcare data is challenging. Particularly, one of the most serious issues with medical information security is protecting of medical content, such as the privacy of patients. As medical information becomes more widely available, security measures must be established to protect confidentiality, integrity, and availability. Image steganography was recently proposed as an extra data protection mechanism for medical records. This paper describes a data-hiding approach for DICOM medical pictures. To ensure secrecy, we use Adversarial Neural Cryptography with SHA-256 (ANC-SHA-256) to encrypt and conceal the RGB patient picture within the medical image's Region of Non-Interest (RONI). To ensure anonymity, we use ANC-SHA-256 to encrypt the RGB patient image before embedding. We employ a secure hash method with 256bit (SHA-256) to produce a digital signature from the information linked to the DICOM file to validate the authenticity and integrity of medical pictures. Many tests were conducted to assess visual quality using diverse medical datasets, including MRI, CT, X-ray, and ultrasound cover pictures. The LFW dataset was chosen as a patient hidden picture. The proposed method performs well in visual quality measures including the PSNR average of 67.55, the NCC average of 0.9959, the SSIM average of 0.9887, the UQI average of 0.9859, and the APE average of 3.83. It outperforms the most current techniques in these visual quality measures (PSNR, MSE, and SSIM) across six medical assessment categories. Furthermore, the proposed method offers great visual quality while being resilient to physical adjustments, histogram analysis, and other geometrical threats such as cropping, rotation, and scaling. Finally, it is particularly efficient in telemedicine applications with high achieving security with a ratio of 99% during remote transmission of Electronic Patient Records (EPR) over the Internet, which safeguards the patien
With the vigorous development of cloud computing, most organizations have shifted their data and applications to the cloud environment for storage, computation, and sharing purposes. During storage and data sharing ac...
详细信息
With the vigorous development of cloud computing, most organizations have shifted their data and applications to the cloud environment for storage, computation, and sharing purposes. During storage and data sharing across the participating entities, a malicious agent may gain access to outsourced data from the cloud environment. A malicious agent is an entity that deliberately breaches the data. This information accessed might be misused or revealed to unauthorized parties. Therefore, data protection and prediction of malicious agents have become a demanding task that needs to be addressed appropriately. To deal with this crucial and challenging issue, this paper presents a Malicious Agent Identification-based Data Security (MAIDS) Model which utilizes XGBoost machine learning classification algorithm for securing data allocation and communication among different participating entities in the cloud system. The proposed model explores and computes intended multiple security parameters associated with online data communication or transactions. Correspondingly, a security-focused knowledge database is produced for developing the XGBoost Classifier-based Malicious Agent Prediction (XC-MAP) unit. Unlike the existing approaches, which only identify malicious agents after data leaks, MAIDS proactively identifies malicious agents by examining their eligibility for respective data access. In this way, the model provides a comprehensive solution to safeguard crucial data from both intentional and non-intentional breaches, by granting data to authorized agents only by evaluating the agent’s behavior and predicting the malicious agent before granting data. The performance of the proposed model is thoroughly evaluated by accomplishing extensive experiments, and the results signify that the MAIDS model predicts the malicious agents with high accuracy, precision, recall, and F1-scores up to 95.55%, 95.30%, 95.50%, and 95.20%, respectively. This enormously enhances the system’s sec
This work proposes a novel and improved Butterfly Optimization Algorithm (BOA), known as LQBOA, to solve BOA’s inherent limitations. The LQBOA uses Lagrange interpolation and simple quadratic interpolation techniques...
详细信息
In foggy traffic scenarios, existing object detection algorithms face challenges such as low detection accuracy, poor robustness, occlusion, missed detections, and false detections. To address this issue, a multi-scal...
详细信息
In foggy traffic scenarios, existing object detection algorithms face challenges such as low detection accuracy, poor robustness, occlusion, missed detections, and false detections. To address this issue, a multi-scale object detection algorithm based on an improved YOLOv8 has been proposed. Firstly, a lightweight attention mechanism, Triplet Attention, is introduced to enhance the algorithm’s ability to extract multi-dimensional and multi-scale features, thereby improving the receptive capability of the feature maps. Secondly, the Diverse Branch Block (DBB) is integrated into the CSP Bottleneck with two Convolutions (C2F) module to strengthen the fusion of semantic information across different layers. Thirdly, a new decoupled detection head is proposed by redesigning the original network head based on the Diverse Branch Block module to improve detection accuracy and reduce missed and false detections. Finally, the Minimum Point Distance based Intersection-over-Union (MPDIoU) is used to replace the original YOLOv8 Complete Intersection-over-Union (CIoU) to accelerate the network’s training convergence. Comparative experiments and dehazing pre-processing tests were conducted on the RTTS and VOC-Fog datasets. Compared to the baseline YOLOv8 model, the improved algorithm achieved mean Average Precision (mAP) improvements of 4.6% and 3.8%, respectively. After defogging pre-processing, the mAP increased by 5.3% and 4.4%, respectively. The experimental results demonstrate that the improved algorithm exhibits high practicality and effectiveness in foggy traffic scenarios.
暂无评论