In blockchain-based unmanned aerial vehicle(UAV)communication systems,the length of a block affects the performance of the *** transmission performance of blocks in the form of finite character segments is also affect...
详细信息
In blockchain-based unmanned aerial vehicle(UAV)communication systems,the length of a block affects the performance of the *** transmission performance of blocks in the form of finite character segments is also affected by the block ***,it is crucial to balance the transmission performance and blockchain performance of blockchain communication systems,especially in wireless environments involving *** paper investigates a secure transmission scheme for blocks in blockchain-based UAV communication systems to prevent the information contained in blocks from being completely eavesdropped during *** our scheme,using a friendly jamming UAV to emit jamming signals diminishes the quality of the eavesdropping channel,thus enhancing the communication security performance of the source *** the constraints of maneuverability and transmission power of the UAV,the joint design of UAV trajectories,transmission power,and block length are proposed to maximize the average minimum secrecy rate(AMSR).Since the optimization problem is non-convex and difficult to solve directly,we first decompose the optimization problem into subproblems of trajectory optimization,transmission power optimization,and block length ***,based on firstorder approximation techniques,these subproblems are reformulated as convex optimization ***,we utilize an alternating iteration algorithm based on the successive convex approximation(SCA)technique to solve these subproblems *** simulation results demonstrate that our proposed scheme can achieve secure transmission for blocks while maintaining the performance of the blockchain.
Brain signal analysis from electroencephalogram(EEG)recordings is the gold standard for diagnosing various neural disorders especially epileptic *** signals are highly chaotic compared to normal brain signals and thus...
详细信息
Brain signal analysis from electroencephalogram(EEG)recordings is the gold standard for diagnosing various neural disorders especially epileptic *** signals are highly chaotic compared to normal brain signals and thus can be identified from EEG *** the current seizure detection and classification landscape,most models primarily focus on binary classification—distinguishing between seizure and non-seizure *** effective for basic detection,these models fail to address the nuanced stages of seizures and the intervals between *** identification of per-seizure or interictal stages and the timing between seizures is crucial for an effective seizure alert *** granularity is essential for improving patient-specific interventions and developing proactive seizure management *** study addresses this gap by proposing a novel AI-based approach for seizure stage classification using a Deep Convolutional Neural Network(DCNN).The developed model goes beyond traditional binary classification by categorizing EEG recordings into three distinct classes,thus providing a more detailed analysis of seizure *** enhance the model’s performance,we have optimized the DCNN using two advanced techniques:the Stochastic Gradient Algorithm(SGA)and the evolutionary Genetic Algorithm(GA).These optimization strategies are designed to fine-tune the model’s accuracy and ***,k-fold cross-validation ensures the model’s reliability and generalizability across different data *** and validated on the Bonn EEG data sets,the proposed optimized DCNN model achieved a test accuracy of 93.2%,demonstrating its ability to accurately classify EEG *** summary,the key advancement of the present research lies in addressing the limitations of existing models by providing a more detailed seizure classification system,thus potentially enhancing the effectiveness of real-time seizure prediction and management systems in clinic
The Internet of Things (IoT) has revolutionized our lives, but it has also introduced significant security and privacy challenges. The vast amount of data collected by these devices, often containing sensitive informa...
详细信息
As smart grid technology rapidly advances,the vast amount of user data collected by smart meter presents significant challenges in data security and privacy *** research emphasizes data security and user privacy conce...
详细信息
As smart grid technology rapidly advances,the vast amount of user data collected by smart meter presents significant challenges in data security and privacy *** research emphasizes data security and user privacy concerns within smart ***,existing methods struggle with efficiency and security when processing large-scale *** efficient data processing with stringent privacy protection during data aggregation in smart grids remains an urgent *** paper proposes an AI-based multi-type data aggregation method designed to enhance aggregation efficiency and security by standardizing and normalizing various data *** approach optimizes data preprocessing,integrates Long Short-Term Memory(LSTM)networks for handling time-series data,and employs homomorphic encryption to safeguard user *** also explores the application of Boneh Lynn Shacham(BLS)signatures for user *** proposed scheme’s efficiency,security,and privacy protection capabilities are validated through rigorous security proofs and experimental analysis.
In this study, tests were done to see what would happen if hydrogen (H2) and lemon grass oil (LO) were used for a lone-cylinder compression ignition engine as a partial diesel replacement. After starting the trial wit...
详细信息
Low-light image enhancement is highly desirable for outdoor image processing and computer vision applications. Research conducted in recent years has shown that images taken in low-light conditions often pose two main...
详细信息
The CloudIoT paradigm has profoundly transformed the healthcare industry, providing outstanding innovation and practical applications. However, despite its many advantages, the adoption of this paradigm in healthcare ...
详细信息
The size of the medical information system is growing gradually. Due to this, traditional data analysis for extracting helpful information for any disease has become inefficient in providing accurate real-time valid i...
详细信息
Recommendation systems (RS) have become prevalent across different domains including music, e-commerce, e-learning, entertainment, and social media to address the issue of information overload. While traditional RS ap...
详细信息
Inefficient task scheduling schemes compromise network performance and increase latency for delay intolerant tasks. Cybertwin based 6G services support data logging of operational queries for appropriate resource allo...
详细信息
暂无评论