Text classification is a quintessential and practical problem in natural language processing with applications in diverse domains such as sentiment analysis, fake news detection, medical diagnosis, and document classi...
详细信息
Challenged networks (CNs) contain resource-constrained nodes deployed in regions where human intervention is difficult. Opportunistic networks (OppNets) are CNs with no predefined source-to-destination paths. Due to t...
详细信息
Efficient highway lighting is crucial for ensuring road safety and reducing energy consumption and costs. Traditional highway lighting systems rely on timers or simple photosensors, leading to inefficient operation by...
详细信息
Deformable image registration is a fundamental technique in medical image analysis and provide physicians with a more complete understanding of patient anatomy and function. Deformable image registration has potential...
详细信息
Medical Image Analysis (MIA) is integral to healthcare, demanding advanced computational techniques for precise diagnostics and treatment planning. The demand for accurate and interpretable models is imperative in the...
详细信息
Medical Image Analysis (MIA) is integral to healthcare, demanding advanced computational techniques for precise diagnostics and treatment planning. The demand for accurate and interpretable models is imperative in the ever-evolving healthcare landscape. This paper explores the potential of Self-Supervised Learning (SSL), transfer learning and domain adaptation methods in MIA. The study comprehensively reviews SSL-based computational techniques in the context of medical imaging, highlighting their merits and limitations. In an empirical investigation, this study examines the lack of interpretable and explainable component selection in existing SSL approaches for MIA. Unlike prior studies that randomly select SSL components based on their performance on natural images, this paper focuses on identifying components based on the quality of learned representations through various clustering evaluation metrics. Various SSL techniques and backbone combinations were rigorously assessed on diverse medical image datasets. The results of this experiment provided insights into the performance and behavior of SSL methods, paving the way for an explainable and interpretable component selection mechanism for artificial intelligence models in medical imaging. The empirical study reveals the superior performance of BYOL (Bootstrap Your Own Latent) with resnet as the backbone, as indicated by various clustering evaluation metrics such as Silhouette Coefficient (0.6), Davies-Bouldin Index (0.67), and Calinski-Harabasz Index (36.9). The study also emphasizes the benefits of transferring weights from a model trained on a similar dataset instead of a dataset from a different domain. Results indicate that the proposed mechanism expedited convergence, achieving 98.66% training accuracy and 92.48% testing accuracy in 23 epochs, requiring almost half the number of epochs for similar results with ImageNet weights. This research contributes to advancing the understanding of SSL in MIA, providin
In the realm of deep learning, Generative Adversarial Networks (GANs) have emerged as a topic of significant interest for their potential to enhance model performance and enable effective data augmentation. This paper...
详细信息
The coronavirus disease 2019 (COVID-19) has posed significant challenges globally, with image classification becoming a critical tool for detecting COVID-19 from chest X-ray and CT images. Convolutional neural network...
详细信息
The widespread availability of GPS has opened up a whole new market that provides a plethora of location-based ***-based social networks have become very popular as they provide end users like us with several such ser...
详细信息
The widespread availability of GPS has opened up a whole new market that provides a plethora of location-based ***-based social networks have become very popular as they provide end users like us with several such services utilizing GPS through our ***,when users utilize these services,they inevitably expose personal information such as their ID and sensitive location to the *** to untrustworthy servers and malicious attackers with colossal background knowledge,users'personal information is at risk on these ***,many privacy-preserving solutions for protecting trajectories have significantly decreased utility after *** have come up with a new trajectory privacy protection solution that contraposes the area of interest for ***,Staying Points Detection Method based on Temporal-Spatial Restrictions(SPDM-TSR)is an interest area mining method based on temporal-spatial restrictions,which can clearly distinguish between staying and moving ***,our privacy protection mechanism focuses on the user's areas of interest rather than the entire ***,our proposed mechanism does not rely on third-party service providers and the attackers'background knowledge *** test our models on real datasets,and the results indicate that our proposed algorithm can provide a high standard privacy guarantee as well as data availability.
This study proposes a malicious code detection model DTL-MD based on deep transfer learning, which aims to improve the detection accuracy of existing methods in complex malicious code and data scarcity. In the feature...
详细信息
Lower back pain is one of the most common medical problems in the world and it is experienced by a huge percentage of people *** to its ability to produce a detailed view of the soft tissues,including the spinal cord,...
详细信息
Lower back pain is one of the most common medical problems in the world and it is experienced by a huge percentage of people *** to its ability to produce a detailed view of the soft tissues,including the spinal cord,nerves,intervertebral discs,and vertebrae,Magnetic Resonance Imaging is thought to be the most effective method for imaging the *** semantic segmentation of vertebrae plays a major role in the diagnostic process of lumbar *** is difficult to semantically partition the vertebrae in Magnetic Resonance Images from the surrounding variety of tissues,including muscles,ligaments,and intervertebral discs.U-Net is a powerful deep-learning architecture to handle the challenges of medical image analysis tasks and achieves high segmentation *** work proposes a modified U-Net architecture namely MU-Net,consisting of the Meijering convolutional layer that incorporates the Meijering filter to perform the semantic segmentation of lumbar vertebrae L1 to L5 and sacral vertebra ***-colour mask images were generated and used as ground truth for training the *** work has been carried out on 1312 images expanded from T1-weighted mid-sagittal MRI images of 515 patients in the Lumbar Spine MRI Dataset publicly available from Mendeley *** proposed MU-Net model for the semantic segmentation of the lumbar vertebrae gives better performance with 98.79%of pixel accuracy(PA),98.66%of dice similarity coefficient(DSC),97.36%of Jaccard coefficient,and 92.55%mean Intersection over Union(mean IoU)metrics using the mentioned dataset.
暂无评论