Suicide represents a poignant societal issue deeply entwined with mental well-being. While existing research primarily focuses on identifying suicide-related texts, there is a gap in the advanced detection of mental h...
详细信息
E-healthcare has significantly improved healthcare services and overall health by utilizing digital technologies such as the internet, computers, and mobile devices. However, secure communication channels play a criti...
详细信息
To learn and analyze graph-structured data, Graph Neural Networks (GNNs) have emerged as a powerful framework over traditional neural networks, which work well on grid-like or sequential structure data. GNNs are parti...
详细信息
Knowledge graphs(KGs) effectively mitigate data sparsity in recommendation systems(RSs) by providing valuable auxiliary information [1]. However, traditional centralized KG-based RSs increase the risk of user privacy ...
Knowledge graphs(KGs) effectively mitigate data sparsity in recommendation systems(RSs) by providing valuable auxiliary information [1]. However, traditional centralized KG-based RSs increase the risk of user privacy *** learning(FL) enhances RS's privacy by enabling model training on decentralized data [2]. Although integrating KG and FL can address both data sparsity and privacy issues in RSs [3], several challenges persist. CH1,Each client's local model relies on a consistent global model from the server, limiting personalized deployment to endusers.
Cloud Computing (CC) is widely adopted in sectors like education, healthcare, and banking due to its scalability and cost-effectiveness. However, its internet-based nature exposes it to cyber threats, necessitating ad...
详细信息
Time-sensitive networking (TSN) is widely used in industrial automation and automotive applications due to its ability to provide deterministic transmission. To meet the stringent deterministic requirements of time-se...
详细信息
Handwritten character segmentation plays a pivotal role in the performance of Optical Character Recognition (OCR) systems. This paper introduces an innovative approach to enhancing segmentation accuracy using Region-B...
详细信息
Forest fires pose a serious threat to ecological balance, air quality, and the safety of both humans and wildlife. This paper presents an improved model based on You Only Look Once version 5 (YOLOv5), named YOLO Light...
详细信息
Forest fires pose a serious threat to ecological balance, air quality, and the safety of both humans and wildlife. This paper presents an improved model based on You Only Look Once version 5 (YOLOv5), named YOLO Lightweight Fire Detector (YOLO-LFD), to address the limitations of traditional sensor-based fire detection methods in terms of real-time performance and accuracy. The proposed model is designed to enhance inference speed while maintaining high detection accuracy on resource-constrained devices such as drones and embedded systems. Firstly, we introduce Depthwise Separable Convolutions (DSConv) to reduce the complexity of the feature extraction network. Secondly, we design and implement the Lightweight Faster Implementation of Cross Stage Partial (CSP) Bottleneck with 2 Convolutions (C2f-Light) and the CSP Structure with 3 Compact Inverted Blocks (C3CIB) modules to replace the traditional C3 modules. This optimization enhances deep feature extraction and semantic information processing, thereby significantly increasing inference speed. To enhance the detection capability for small fires, the model employs a Normalized Wasserstein Distance (NWD) loss function, which effectively reduces the missed detection rate and improves the accuracy of detecting small fire sources. Experimental results demonstrate that compared to the baseline YOLOv5s model, the YOLO-LFD model not only increases inference speed by 19.3% but also significantly improves the detection accuracy for small fire targets, with only a 1.6% reduction in overall mean average precision (mAP)@0.5. Through these innovative improvements to YOLOv5s, the YOLO-LFD model achieves a balance between speed and accuracy, making it particularly suitable for real-time detection tasks on mobile and embedded devices.
NJmat is a user-friendly,data-driven machine learning interface designed for materials design and *** platform integrates advanced computational techniques,including natural language processing(NLP),large language mod...
详细信息
NJmat is a user-friendly,data-driven machine learning interface designed for materials design and *** platform integrates advanced computational techniques,including natural language processing(NLP),large language models(LLM),machine learning potentials(MLP),and graph neural networks(GNN),to facili-tate materials *** platform has been applied in diverse materials research areas,including perovskite surface design,catalyst discovery,battery materials screening,structural alloy design,and molecular *** automating feature selection,predictive modeling,and result interpretation,NJmat accelerates the development of high-performance materials across energy storage,conversion,and structural ***,NJmat serves as an educational tool,allowing students and researchers to apply machine learning techniques in materials science with minimal coding *** automated feature extraction,genetic algorithms,and interpretable machine learning models,NJmat simplifies the workflow for materials informatics,bridging the gap between AI and experimental materials *** latest version(available at https://***/articles/software/NJmatML/24607893(accessed on 01 January 2025))enhances its functionality by incorporating NJmatNLP,a module leveraging language models like MatBERT and those based on Word2Vec to support materials prediction *** utilizing clustering and cosine similarity analysis with UMAP visualization,NJmat enables intuitive exploration of materials *** NJmat primarily focuses on structure-property relationships and the discovery of novel chemistries,it can also assist in optimizing processing conditions when relevant parameters are included in the training *** providing an accessible,integrated environment for machine learning-driven materials discovery,NJmat aligns with the objectives of the Materials Genome Initiative and promotes broader adoption of AI techniques in materials science.
Sign Language Production (SLP) aims to convert text or audio sentences into sign language videos corresponding to their semantics, which is challenging due to the diversity and complexity of sign languages, and cross-...
详细信息
暂无评论