The lifetime of a sensor network is generally longer than that of a single sensor node, so to ensure the connectivity of the network, new nodes need to be deployed into the network in multiphase. Such networks are cal...
详细信息
Binary self-dual cyclic codes have been studied since the classical work of Sloane and Thompson published in IEEE Trans. Inf. Theory, vol. 29, 1983. Twenty five years later, an infinite family of binary self-dual cycl...
详细信息
Medical imaging, a cornerstone of disease diagnosis and treatment planning, faces the hurdles of subjective interpretation and reliance on specialized expertise. Deep learning algorithms show improvements in automatin...
详细信息
Kidney disease (KD) is a gradually increasing global health concern. It is a chronic illness linked to higher rates of morbidity and mortality, a higher risk of cardiovascular disease and numerous other illnesses, and...
详细信息
Suicide represents a poignant societal issue deeply entwined with mental well-being. While existing research primarily focuses on identifying suicide-related texts, there is a gap in the advanced detection of mental h...
详细信息
With the rise of encrypted traffic,traditional network analysis methods have become less effective,leading to a shift towards deep learning-based *** these,multimodal learning-based classification methods have gained ...
详细信息
With the rise of encrypted traffic,traditional network analysis methods have become less effective,leading to a shift towards deep learning-based *** these,multimodal learning-based classification methods have gained attention due to their ability to leverage diverse feature sets from encrypted traffic,improving classification ***,existing research predominantly relies on late fusion techniques,which hinder the full utilization of deep features within the *** address this limitation,we propose a novel multimodal encrypted traffic classification model that synchronizes modality fusion with multiscale feature ***,our approach performs real-time fusion of modalities at each stage of feature extraction,enhancing feature representation at each level and preserving inter-level correlations for more effective *** continuous fusion strategy improves the model’s ability to detect subtle variations in encrypted traffic,while boosting its robustness and adaptability to evolving network *** results on two real-world encrypted traffic datasets demonstrate that our method achieves a classification accuracy of 98.23% and 97.63%,outperforming existing multimodal learning-based methods.
E-healthcare has significantly improved healthcare services and overall health by utilizing digital technologies such as the internet, computers, and mobile devices. However, secure communication channels play a criti...
详细信息
Disastrous situations pose a formidable challenge, testing our resilience against nature's fury and the race against time to prevent the loss of human life. It is noted that in such situations that Microblogging p...
详细信息
Fog computing is a key enabling technology of 6G systems as it provides quick and reliable computing,and data storage services which are required for several 6G *** Intelligence(AI)algorithms will be an integral part ...
详细信息
Fog computing is a key enabling technology of 6G systems as it provides quick and reliable computing,and data storage services which are required for several 6G *** Intelligence(AI)algorithms will be an integral part of 6G systems and efficient task offloading techniques using fog computing will improve their performance and *** this paper,the focus is on the scenario of Partial Offloading of a Task to Multiple Helpers(POMH)in which larger tasks are divided into smaller subtasks and processed in parallel,hence expediting task ***,using POMH presents challenges such as breaking tasks into subtasks and scaling these subtasks based on many interdependent factors to ensure that all subtasks of a task finish simultaneously,preventing resource ***,applying matching theory to POMH scenarios results in dynamic preference profiles of helping devices due to changing subtask sizes,resulting in a difficult-to-solve,externalities *** paper introduces a novel many-to-one matching-based algorithm,designed to address the externalities problem and optimize resource allocation within POMH ***,we propose a new time-efficient preference profiling technique that further enhances time optimization in POMH *** performance of the proposed technique is thoroughly evaluated in comparison to alternate baseline schemes,revealing many advantages of the proposed *** simulation findings indisputably show that the proposed matching-based offloading technique outperforms existing methodologies in the literature,yielding a remarkable 52 reduction in task latency,particularly under high workloads.
Remote driving, an emergent technology enabling remote operations of vehicles, presents a significant challenge in transmitting large volumes of image data to a central server. This requirement outpaces the capacity o...
详细信息
Remote driving, an emergent technology enabling remote operations of vehicles, presents a significant challenge in transmitting large volumes of image data to a central server. This requirement outpaces the capacity of traditional communication methods. To tackle this, we propose a novel framework using semantic communications, through a region of interest semantic segmentation method, to reduce the communication costs by transmitting meaningful semantic information rather than bit-wise data. To solve the knowledge base inconsistencies inherent in semantic communications, we introduce a blockchain-based edge-assisted system for managing diverse and geographically varied semantic segmentation knowledge bases. This system not only ensures the security of data through the tamper-resistant nature of blockchain but also leverages edge computing for efficient management. Additionally, the implementation of blockchain sharding handles differentiated knowledge bases for various tasks, thus boosting overall blockchain efficiency. Experimental results show a great reduction in latency by sharding and an increase in model accuracy, confirming our framework's effectiveness.
暂无评论