Decentralized Anonymous Payment Systems (DAP), often known as cryptocurrencies, stand out as some of the most innovative and successful applications on the blockchain. These systems have garnered significant attention...
详细信息
Diabetes-oriented diabetic retinopathy impacts the blood vessels in the region of the retina to enlarge and leak blood and other fluids. In most cases, diabetic retinopathy affects both eyes. If left untreated, it wou...
详细信息
The underlying vertical components represented by vehicleto-everything networks will largely accelerate the advance of the 6th generation wireless communications [1]. In this context, a plethora of Internet-of-Vehicle...
The underlying vertical components represented by vehicleto-everything networks will largely accelerate the advance of the 6th generation wireless communications [1]. In this context, a plethora of Internet-of-Vehicles(IoV) applications have increasingly permeated our daily lives with the development of advocated intelligent connected vehicles [2].
The earthquake early warning (EEW) system provides advance notice of potentially damaging ground shaking. In EEW, early estimation of magnitude is crucial for timely rescue operations. A set of thirty-four features is...
详细信息
The earthquake early warning (EEW) system provides advance notice of potentially damaging ground shaking. In EEW, early estimation of magnitude is crucial for timely rescue operations. A set of thirty-four features is extracted using the primary wave earthquake precursor signal and site-specific information. In Japan's earthquake magnitude dataset, there is a chance of a high imbalance concerning the earthquakes above strong impact. This imbalance causes a high prediction error while training advanced machine learning or deep learning models. In this work, Conditional Tabular Generative Adversarial Networks (CTGAN), a deep machine learning tool, is utilized to learn the characteristics of the first arrival of earthquake P-waves and generate a synthetic dataset based on this information. The result obtained using actual and mixed (synthetic and actual) datasets will be used for training the stacked ensemble magnitude prediction model, MagPred, designed specifically for this study. There are 13295, 3989, and 1710 records designated for training, testing, and validation. The mean absolute error of the test dataset for single station magnitude detection using early three, four, and five seconds of P wave are 0.41, 0.40, and 0.38 MJMA. The study demonstrates that the Generative Adversarial Networks (GANs) can provide a good result for single-station magnitude prediction. The study can be effective where less seismic data is available. The study shows that the machine learning method yields better magnitude detection results compared with the several regression models. The multi-station magnitude prediction study has been conducted on prominent Osaka, Off Fukushima, and Kumamoto earthquakes. Furthermore, to validate the performance of the model, an inter-region study has been performed on the earthquakes of the India or Nepal region. The study demonstrates that GANs can discover effective magnitude estimation compared with non-GAN-based methods. This has a high potential
Long-term care refers to any support, both medical and non-medical, provided to the elderly with a chronic illness or disability due to physical or mental conditions. Since the cost of long-term care insurance is not ...
详细信息
Load balancing and scheduling are essential components of cloud computing that aim to optimize resource allocation and utilization. In a cloud environment, multiple virtual machines and applications compete for shared...
详细信息
This study introduces a data-driven approach for state and output feedback control addressing the constrained output regulation problem in unknown linear discrete-time systems. Our method ensures effective tracking pe...
详细信息
This study introduces a data-driven approach for state and output feedback control addressing the constrained output regulation problem in unknown linear discrete-time systems. Our method ensures effective tracking performance while satisfying the state and input constraints, even when system matrices are not available. We first establish a sufficient condition necessary for the existence of a solution pair to the regulator equation and propose a data-based approach to obtain the feedforward and feedback control gains for state feedback control using linear programming. Furthermore, we design a refined Luenberger observer to accurately estimate the system state, while keeping the estimation error within a predefined set. By combining output regulation theory, we develop an output feedback control strategy. The stability of the closed-loop system is rigorously proved to be asymptotically stable by further leveraging the concept of λ-contractive sets.
Data-driven process monitoring is an effective approach to assure safe operation of modern manufacturing and energy systems, such as thermal power plants being studied in this work. Industrial processes are inherently...
详细信息
Data-driven process monitoring is an effective approach to assure safe operation of modern manufacturing and energy systems, such as thermal power plants being studied in this work. Industrial processes are inherently dynamic and need to be monitored using dynamic algorithms. Mainstream dynamic algorithms rely on concatenating current measurement with past data. This work proposes a new, alternative dynamic process monitoring algorithm, using dot product feature analysis(DPFA).DPFA computes the dot product of consecutive samples, thus naturally capturing the process dynamics through temporal correlation. At the same time, DPFA's online computational complexity is lower than not just existing dynamic algorithms, but also classical static algorithms(e.g., principal component analysis and slow feature analysis). The detectability of the new algorithm is analyzed for three types of faults typically seen in process systems:sensor bias, process fault and gain change fault. Through experiments with a numerical example and real data from a thermal power plant, the DPFA algorithm is shown to be superior to the state-of-the-art methods, in terms of better monitoring performance(fault detection rate and false alarm rate) and lower computational complexity.
In recent years, mental health issues have profoundly impacted individuals’ well-being, necessitating prompt identification and intervention. Existing approaches grapple with the complex nature of mental health, faci...
详细信息
In recent years, mental health issues have profoundly impacted individuals’ well-being, necessitating prompt identification and intervention. Existing approaches grapple with the complex nature of mental health, facing challenges like task interference, limited adaptability, and difficulty in capturing nuanced linguistic expressions indicative of various conditions. In response to these challenges, our research presents three novel models employing multi-task learning (MTL) to understand mental health behaviors comprehensively. These models encompass soft-parameter sharing-based long short-term memory with attention mechanism (SPS-LSTM-AM), SPS-based bidirectional gated neural networks with self-head attention mechanism (SPS-BiGRU-SAM), and SPS-based bidirectional neural network with multi-head attention mechanism (SPS-BNN-MHAM). Our models address diverse tasks, including detecting disorders such as bipolar disorder, insomnia, obsessive-compulsive disorder, and panic in psychiatric texts, alongside classifying suicide or non-suicide-related texts on social media as auxiliary tasks. Emotion detection in suicide notes, covering emotions of abuse, blame, and sorrow, serves as the main task. We observe significant performance enhancement in the primary task by incorporating auxiliary tasks. Advanced encoder-building techniques, including auto-regressive-based permutation and enhanced permutation language modeling, are recommended for effectively capturing mental health contexts’ subtleties, semantic nuances, and syntactic structures. We present the shared feature extractor called shared auto-regressive for language modeling (S-ARLM) to capture high-level representations that are useful across tasks. Additionally, we recommend soft-parameter sharing (SPS) subtypes-fully sharing, partial sharing, and independent layer-to minimize tight coupling and enhance adaptability. Our models exhibit outstanding performance across various datasets, achieving accuracies of 96.9%, 97.
Perceptual image hashing is a significant and time-effective method for recognizing images within extensive databases, focusing on achieving two key objectives: robustness and discrimination. The right balance between...
详细信息
暂无评论