Improving website security to prevent malicious online activities is crucial,and CAPTCHA(Completely Automated Public Turing test to tell computers and Humans Apart)has emerged as a key strategy for distinguishing huma...
详细信息
Improving website security to prevent malicious online activities is crucial,and CAPTCHA(Completely Automated Public Turing test to tell computers and Humans Apart)has emerged as a key strategy for distinguishing human users from automated ***-based CAPTCHAs,designed to be easily decipherable by humans yet challenging for machines,are a common form of this ***,advancements in deep learning have facilitated the creation of models adept at recognizing these text-based CAPTCHAs with surprising *** our comprehensive investigation into CAPTCHA recognition,we have tailored the renowned UpDown image captioning model specifically for this *** approach innovatively combines an encoder to extract both global and local features,significantly boosting the model’s capability to identify complex details within CAPTCHA *** the decoding phase,we have adopted a refined attention mechanism,integrating enhanced visual attention with dual layers of Long Short-Term Memory(LSTM)networks to elevate CAPTCHA recognition *** rigorous testing across four varied datasets,including those from Weibo,BoC,Gregwar,and Captcha 0.3,demonstrates the versatility and effectiveness of our *** results not only highlight the efficiency of our approach but also offer profound insights into its applicability across different CAPTCHA types,contributing to a deeper understanding of CAPTCHA recognition technology.
Voice, motion, and mimicry are naturalistic control modalities that have replaced text or display-driven control in human-computer communication (HCC). Specifically, the vocals contain a lot of knowledge, revealing de...
详细信息
Voice, motion, and mimicry are naturalistic control modalities that have replaced text or display-driven control in human-computer communication (HCC). Specifically, the vocals contain a lot of knowledge, revealing details about the speaker’s goals and desires, as well as their internal condition. Certain vocal characteristics reveal the speaker’s mood, intention, and motivation, while word study assists the speaker’s demand to be understood. Voice emotion recognition has become an essential component of modern HCC networks. Integrating findings from the various disciplines involved in identifying vocal emotions is also challenging. Many sound analysis techniques were developed in the past. Learning about the development of artificial intelligence (AI), and especially Deep Learning (DL) technology, research incorporating real data is becoming increasingly common these days. Thus, this research presents a novel selfish herd optimization-tuned long/short-term memory (SHO-LSTM) strategy to identify vocal emotions in human communication. The RAVDESS public dataset is used to train the suggested SHO-LSTM technique. Mel-frequency cepstral coefficient (MFCC) and wiener filter (WF) techniques are used, respectively, to remove noise and extract features from the data. LSTM and SHO are applied to the extracted data to optimize the LSTM network’s parameters for effective emotion recognition. Python Software was used to execute our proposed framework. In the finding assessment phase, Numerous metrics are used to evaluate the proposed model’s detection capability, Such as F1-score (95%), precision (95%), recall (96%), and accuracy (97%). The suggested approach is tested on a Python platform, and the SHO-LSTM’s outcomes are contrasted with those of other previously conducted research. Based on comparative assessments, our suggested approach outperforms the current approaches in vocal emotion recognition.
In recent years, IoT has transformed personal environments by integrating diverse smart devices. This paper presents an advanced IoT architecture that optimizes network infrastructure, focusing on the adoption of MQTT...
详细信息
Crude oil prices (COP) profoundly influence global economic stability, with fluctuations reverberating across various sectors. Accurate forecasting of COP is indispensable for governments, policymakers, and stakeholde...
详细信息
If adversaries were to obtain quantum computers in the future, their massive computing power would likely break existing security schemes. Since security is a continuous process, more substantial security schemes must...
详细信息
Earthquakes have the potential to cause catastrophic structural and economic damage. This research explores the application of machine learning for earthquake prediction using LANL (Los Alamos National Laboratory) dat...
详细信息
The Internet of Things (IoT) integrates diverse devices into the Internet infrastructure, including sensors, meters, and wearable devices. Designing efficient IoT networks with these heterogeneous devices requires the...
详细信息
The Internet of Things (IoT) integrates diverse devices into the Internet infrastructure, including sensors, meters, and wearable devices. Designing efficient IoT networks with these heterogeneous devices requires the selection of appropriate routing protocols, which is crucial for maintaining high Quality of Service (QoS). The Internet engineering Task Force’s Routing Over Low Power and Lossy Networks (IETF ROLL) working group developed the IPv6 Routing Protocol for Low Power and Lossy Networks (RPL) to meet these needs. While the initial RPL standard focused on single-metric route selection, ongoing research explores enhancing RPL by incorporating multiple routing metrics and developing new Objective Functions (OFs). This paper introduces a novel Objective Function (OF), the Reliable and Secure Objective Function (RSOF), designed to enhance the reliability and trustworthiness of parent selection at both the node and link levels within IoT and RPL routing protocols. The RSOF employs an adaptive parent node selection mechanism that incorporates multiple metrics, including Residual Energy (RE), Expected Transmission Count (ETX), Extended RPL Node Trustworthiness (ERNT), and a novel metric that measures node failure rate (NFR). In this mechanism, nodes with a high NFR are excluded from the parent selection process to improve network reliability and stability. The proposed RSOF was evaluated using random and grid topologies in the Cooja Simulator, with tests conducted across small, medium, and large-scale networks to examine the impact of varying node densities. The simulation results indicate a significant improvement in network performance, particularly in terms of average latency, packet acknowledgment ratio (PAR), packet delivery ratio (PDR), and Control Message Overhead (CMO), compared to the standard Minimum Rank with Hysteresis Objective Function (MRHOF).
Purpose: The rapid spread of COVID-19 has resulted in significant harm and impacted tens of millions of people globally. In order to prevent the transmission of the virus, individuals often wear masks as a protective ...
详细信息
Industrial cyber-physical systems closely integrate physical processes with cyberspace, enabling real-time exchange of various information about system dynamics, sensor outputs, and control decisions. The connection b...
详细信息
Industrial cyber-physical systems closely integrate physical processes with cyberspace, enabling real-time exchange of various information about system dynamics, sensor outputs, and control decisions. The connection between cyberspace and physical processes results in the exposure of industrial production information to unprecedented security risks. It is imperative to develop suitable strategies to ensure cyber security while meeting basic performance *** the perspective of control engineering, this review presents the most up-to-date results for privacy-preserving filtering,control, and optimization in industrial cyber-physical systems. Fashionable privacy-preserving strategies and mainstream evaluation metrics are first presented in a systematic manner for performance evaluation and engineering *** discussion discloses the impact of typical filtering algorithms on filtering performance, specifically for privacy-preserving Kalman filtering. Then, the latest development of industrial control is systematically investigated from consensus control of multi-agent systems, platoon control of autonomous vehicles as well as hierarchical control of power systems. The focus thereafter is on the latest privacy-preserving optimization algorithms in the framework of consensus and their applications in distributed economic dispatch issues and energy management of networked power systems. In the end, several topics for potential future research are highlighted.
The cellular automaton (CA), a discrete model, is gaining popularity in simulations and scientific exploration across various domains, including cryptography, error-correcting codes, VLSI design and test pattern gener...
详细信息
暂无评论