The coronavirus disease 2019 (COVID-19) has posed significant challenges globally, with image classification becoming a critical tool for detecting COVID-19 from chest X-ray and CT images. Convolutional neural network...
详细信息
This study proposes a malicious code detection model DTL-MD based on deep transfer learning, which aims to improve the detection accuracy of existing methods in complex malicious code and data scarcity. In the feature...
详细信息
Lower back pain is one of the most common medical problems in the world and it is experienced by a huge percentage of people *** to its ability to produce a detailed view of the soft tissues,including the spinal cord,...
详细信息
Lower back pain is one of the most common medical problems in the world and it is experienced by a huge percentage of people *** to its ability to produce a detailed view of the soft tissues,including the spinal cord,nerves,intervertebral discs,and vertebrae,Magnetic Resonance Imaging is thought to be the most effective method for imaging the *** semantic segmentation of vertebrae plays a major role in the diagnostic process of lumbar *** is difficult to semantically partition the vertebrae in Magnetic Resonance Images from the surrounding variety of tissues,including muscles,ligaments,and intervertebral discs.U-Net is a powerful deep-learning architecture to handle the challenges of medical image analysis tasks and achieves high segmentation *** work proposes a modified U-Net architecture namely MU-Net,consisting of the Meijering convolutional layer that incorporates the Meijering filter to perform the semantic segmentation of lumbar vertebrae L1 to L5 and sacral vertebra ***-colour mask images were generated and used as ground truth for training the *** work has been carried out on 1312 images expanded from T1-weighted mid-sagittal MRI images of 515 patients in the Lumbar Spine MRI Dataset publicly available from Mendeley *** proposed MU-Net model for the semantic segmentation of the lumbar vertebrae gives better performance with 98.79%of pixel accuracy(PA),98.66%of dice similarity coefficient(DSC),97.36%of Jaccard coefficient,and 92.55%mean Intersection over Union(mean IoU)metrics using the mentioned dataset.
This study applies single-valued neutrosophic sets, which extend the frameworks of fuzzy and intuitionistic fuzzy sets, to graph theory. We introduce a new category of graphs called Single-Valued Heptapartitioned Neut...
详细信息
This systematic review gave special attention to diabetes and the advancements in food and nutrition needed to prevent or manage diabetes in all its forms. There are two main forms of diabetes mellitus: Type 1 (T1D) a...
详细信息
A fuzzy visual image denoising algorithm based on Bayesian estimation is proposed to address the problems of poor denoising performance and long denoising time in traditional image denoising algorithms. First, analyse...
详细信息
With the continuous growth of cloud computing and virtualization technology, network function virtualization (NFV) techniques have been significantly enhanced. NFV has many advantages such as simplified services, prov...
详细信息
With the continuous growth of cloud computing and virtualization technology, network function virtualization (NFV) techniques have been significantly enhanced. NFV has many advantages such as simplified services, providing more flexible services, and reducing network capital and operational costs. However, it also poses new challenges that need to be addressed. A challenging problem with NFV is resource management, since the resources required by each virtualized network function (VNF) change with dynamic traffic variations, requiring automatic scaling of VNF resources. Due to the resource consumption importance, it is essential to propose an efficient resource auto-scaling method in the NFV networks. Inadequate or excessive utilization of VNF resources can result in diminished performance of the entire service chain, thereby affecting network performance. Therefore, predicting VNF resource requirements is crucial for meeting traffic demands. VNF behavior in networks is complex and nonlinear, making it challenging to model. By incorporating machine learning methods into resource prediction models, network service performance can be improved by addressing this complexity. As a result, this paper introduces a new auto-scaling architecture and algorithm to tackle the predictive VNF problem. Within the proposed architecture, there is a predictive VNF auto-scaling engine that comprises two modules: a predictive task scheduler and a predictive VNF auto-scaler. Furthermore, a prediction engine with a VNF resource predictor module has been designed. In addition, the proposed algorithm called GPAS is presented in three phases, VNF resource prediction using genetic programming (GP) technique, task scheduling and decision-making, and auto-scaling execution. The GPAS method is simulated in the KSN framework, a network environment based on NFV/SDN. In the evaluation results, the GPAS method shows better performance in SLA violation rate, resource usage, and response time when co
With the rise of Arabic digital content, effective summarization methods are essential. Current Arabic text summarization systems face challenges such as language complexity and vocabulary limitations. We introduce an...
详细信息
Emotion detection from social media data plays a crucial role in studying societal emotions concerning different events, aiding in predicting the reactions of specific social groups. However, it is complex to automati...
详细信息
The effects of changing learning rates, data augmentation percentage and numbers of epochs on the performance of Wasserstein Generative Adversarial Networks with Gradient Penalties (WGAN-GP) are evaluated in this stud...
详细信息
暂无评论