Fires are becoming one of the major natural hazards that threaten the ecology, economy, human life and even more worldwide. Therefore, early fire detection systems are crucial to prevent fires from spreading out of co...
详细信息
Rice is a major crop and staple food for more than half of the world’s population and plays a vital role in ensuring food security as well as the global economy pests and diseases pose a threat to the production of r...
详细信息
Rice is a major crop and staple food for more than half of the world’s population and plays a vital role in ensuring food security as well as the global economy pests and diseases pose a threat to the production of rice and have a substantial impact on the yield and quality of the crop. In recent times, deep learning methods have gained prominence in predicting rice leaf diseases. Despite the increasing use of these methods, there are notable limitations in existing approaches. These include a scarcity of extensive and diverse collections of leaf disease images, lower accuracy rates, higher time complexity, and challenges in real-time leaf disease detection. To address the limitations, we explicitly investigate various data augmentation approaches using different generative adversarial networks (GANs) for rice leaf disease detection. Along with the GAN model, advanced CNN-based classifiers have been applied to classify the images with improving data augmentation. Our approach involves employing various GANs to generate high-quality synthetic images. This strategy aims to tackle the challenges posed by limited and imbalanced datasets in the identification of leaf diseases. The key benefit of incorporating GANs in leaf disease detection lies in their ability to create synthetic images, effectively augmenting the dataset’s size, enhancing diversity, and reducing the risk of overfitting. For dataset augmentation, we used three distinct GAN architectures—namely simple GAN, CycleGAN, and DCGAN. Our experiments demonstrated that models utilizing the GAN-augmented dataset generally outperformed those relying on the non-augmented dataset. Notably, the CycleGAN architecture exhibited the most favorable outcomes, with the MobileNet model achieving an accuracy of 98.54%. These findings underscore the significant potential of GAN models in improving the performance of detection models for rice leaf diseases, suggesting their promising role in the future research within this doma
Generative image steganography is a technique that directly generates stego images from secret *** traditional methods,it theoretically resists steganalysis because there is no cover ***,the existing generative image ...
详细信息
Generative image steganography is a technique that directly generates stego images from secret *** traditional methods,it theoretically resists steganalysis because there is no cover ***,the existing generative image steganography methods generally have good steganography performance,but there is still potential room for enhancing both the quality of stego images and the accuracy of secret information ***,this paper proposes a generative image steganography algorithm based on attribute feature transformation and invertible mapping ***,the reference image is disentangled by a content and an attribute encoder to obtain content features and attribute features,***,a mean mapping rule is introduced to map the binary secret information into a noise vector,conforming to the distribution of attribute *** noise vector is input into the generator to produce the attribute transformed stego image with the content feature of the reference ***,we design an adversarial loss,a reconstruction loss,and an image diversity loss to train the proposed *** results demonstrate that the stego images generated by the proposed method are of high quality,with an average extraction accuracy of 99.4%for the hidden ***,since the stego image has a uniform distribution similar to the attribute-transformed image without secret information,it effectively resists both subjective and objective steganalysis.
In maritime Internet of Things (IoT) systems, leveraging a swarm of Unmanned Aerial Vehicles (UAVs) and optical communication can achieve a variety of potential maritime missions. However, due to the high directionali...
详细信息
The software development projects’ testing part is usually expensive and complex, but it is essential to gauge the effectiveness of the developed software. Software Fault Prediction (SFP) primarily serves to detect f...
详细信息
With the rise of information-centric networks (ICN), the user can access the caching content from nearby caching nodes rather than the remote content server through in-network caching facilities. The existing articles...
详细信息
Automated detection of plant diseases is crucial as it simplifies the task of monitoring large farms and identifies diseases at their early stages to mitigate further plant degradation. Besides the decline in plant he...
详细信息
Self-supervised graph representation learning has recently shown considerable promise in a range of fields, including bioinformatics and social networks. A large number of graph contrastive learning approaches have sh...
详细信息
Self-supervised graph representation learning has recently shown considerable promise in a range of fields, including bioinformatics and social networks. A large number of graph contrastive learning approaches have shown promising performance for representation learning on graphs, which train models by maximizing agreement between original graphs and their augmented views(i.e., positive views). Unfortunately, these methods usually involve pre-defined augmentation strategies based on the knowledge of human experts. Moreover, these strategies may fail to generate challenging positive views to provide sufficient supervision signals. In this paper, we present a novel approach named graph pooling contrast(GPS) to address these *** by the fact that graph pooling can adaptively coarsen the graph with the removal of redundancy, we rethink graph pooling and leverage it to automatically generate multi-scale positive views with varying emphasis on providing challenging positives and preserving semantics, i.e., strongly-augmented view and weakly-augmented view. Then, we incorporate both views into a joint contrastive learning framework with similarity learning and consistency learning, where our pooling module is adversarially trained with respect to the encoder for adversarial robustness. Experiments on twelve datasets on both graph classification and transfer learning tasks verify the superiority of the proposed method over its counterparts.
A multi-secret image sharing (MSIS) scheme facilitates the secure distribution of multiple images among a group of participants. Several MSIS schemes have been proposed with a (n, n) structure that encodes secret...
详细信息
Evolutionary algorithms have been extensively utilized in practical ***,manually designed population updating formulas are inherently prone to the subjective influence of the *** programming(GP),characterized by its t...
详细信息
Evolutionary algorithms have been extensively utilized in practical ***,manually designed population updating formulas are inherently prone to the subjective influence of the *** programming(GP),characterized by its tree-based solution structure,is a widely adopted technique for optimizing the structure of mathematical models tailored to real-world *** paper introduces a GP-based framework(GPEAs)for the autonomous generation of update formulas,aiming to reduce human *** modifications to tree-based GP have been instigated,encompassing adjustments to its initialization process and fundamental update operations such as crossover and mutation within the *** designing suitable function sets and terminal sets tailored to the selected evolutionary algorithm,and ultimately derive an improved update *** Cat Swarm Optimization Algorithm(CSO)is chosen as a case study,and the GP-EAs is employed to regenerate the speed update formulas of the *** validate the feasibility of the GP-EAs,the comprehensive performance of the enhanced algorithm(GP-CSO)was evaluated on the CEC2017 benchmark ***,GP-CSO is applied to deduce suitable embedding factors,thereby improving the robustness of the digital watermarking *** experimental results indicate that the update formulas generated through training with GP-EAs possess excellent performance scalability and practical application proficiency.
暂无评论