Epileptic seizures are a significant agony for those who suffer from them. Epileptic studies primarily focus on understanding the abnormal behavior of brain signals. Detecting seizures in EEG signals manually is a ver...
详细信息
Recently, deep learning has been widely employed across various domains. The Convolution Neural Network (CNN), a popular deep learning algorithm, has been successfully utilized in object recognition tasks, such as fac...
详细信息
Fruit safety is a critical component of the global economy, particularly within the agricultural sector. There has been a recent surge in the incidence of diseases affecting fruits, leading to economic setbacks in agr...
详细信息
Brain–machine interfaces (BMIs) offer significant promise for enabling paralyzed individuals to control external devices using their brain signals. One challenge is that during the online brain control (BC) process, ...
详细信息
Earthquake damage prediction is crucial for ensuring the safety of building occupants and preventing substantial financial losses. Because it enables robust structural design, financial readiness, and well-timed expen...
详细信息
Earthquake damage prediction is crucial for ensuring the safety of building occupants and preventing substantial financial losses. Because it enables robust structural design, financial readiness, and well-timed expenditures in preventive measures, anticipating seismic impacts promotes sustainability and long-term building. Machine learning (ML) have transformed building damage prediction, providing efficient methodologies for assessing structural vulnerabilities and risks. ML analyzes multifaceted datasets, handling complex spatial and temporal data, enhancing accuracy in forecasting damage probabilities and enabling proactive monitoring for timely interventions. However, ensemble machine learning and the fine-tuning of such algorithms with the hyperparameter optimization with the earthquake damage prediction have not been explored in the literature yet. Hyperparameter optimization in machine learning enhances model performance and generalization capacity. Skillful adjustment of hyperparameters significantly improves predictive accuracy, resilience, and training convergence, ensuring optimal model performance across diverse datasets and real-world scenarios. This study focuses on improving earthquake damage prediction accuracy through an extensive analysis of the earthquake dataset on ensemble machine learning with hyperparameter tuning. Utilizing various hyperparameter tuning algorithms and examining five ensemble machine learning algorithms, combined with six distinct hyperparameter tuning techniques, significantly enhanced accuracy. The paper’s main contributions include exploring novel hyperparameter tuning algorithms for earthquake damage prediction and filling a knowledge gap in the field. The thorough dataset analysis revealed a scarcity of existing literature, suggesting opportunities for further research. The study underscores the critical role of hyperparameter analysis in machine learning and proposes potential applications beyond earthquake prediction,
Over the past few years,the application and usage of Machine Learning(ML)techniques have increased exponentially due to continuously increasing the size of data and computing *** the popularity of ML techniques,only a...
详细信息
Over the past few years,the application and usage of Machine Learning(ML)techniques have increased exponentially due to continuously increasing the size of data and computing *** the popularity of ML techniques,only a few research studies have focused on the application of ML especially supervised learning techniques in Requirement engineering(RE)activities to solve the problems that occur in RE *** authors focus on the systematic mapping of past work to investigate those studies that focused on the application of supervised learning techniques in RE activities between the period of 2002–*** authors aim to investigate the research trends,main RE activities,ML algorithms,and data sources that were studied during this ***-five research studies were selected based on our exclusion and inclusion *** results show that the scientific community used 57 *** those algorithms,researchers mostly used the five following ML algorithms in RE activities:Decision Tree,Support Vector Machine,Naïve Bayes,K-nearest neighbour Classifier,and Random *** results show that researchers used these algorithms in eight major RE *** activities are requirements analysis,failure prediction,effort estimation,quality,traceability,business rules identification,content classification,and detection of problems in requirements written in natural *** selected research studies used 32 private and 41 public data *** most popular data sources that were detected in selected studies are the Metric Data Programme from NASA,Predictor Models in Software engineering,and iTrust Electronic Health Care System.
Given the severity of waste pollution as a major environmental concern, intelligent and sustainable waste management is becoming increasingly crucial in both developed and developing countries. The material compositio...
详细信息
The most serious and hazardous for an electrical provider these days are non-technical losses caused due to electricity theft. The economy as a whole is impacted by fraudulent electricity usage, which lowers supply qu...
详细信息
As many countries face the challenges of an aging population and declining birth rates, the demand for labor, particularly for assisting the elderly, is increasing. Traditional robots, being standardized products, req...
详细信息
Now-a-days, the generation of videos has increased dramatically due to the quick growth of multimedia and the internet. The need for effective ways to store, manage, and index the massive numbers of videos has become ...
详细信息
暂无评论