The fast advancement of the multimedia era has led to an explosion in the use and technology of large amounts of digital snapshots. It has created a developing call for Image compression techniques that can reduce the...
详细信息
Background: The automated classification of videos through artificial neural networks is addressed in this work. To explore the concepts and measure the results, the data set UCF101 is used, consisting of video clips ...
详细信息
Multilevel characterization of the recently developed Unknown Protein Sequence (UPS) is significant for the drug-designing, disease-diagnosis, and treatment plans. UPS can demonstrate harmful as well as useful charact...
详细信息
Diabetes-oriented diabetic retinopathy impacts the blood vessels in the region of the retina to enlarge and leak blood and other fluids. In most cases, diabetic retinopathy affects both eyes. If left untreated, it wou...
详细信息
In the past few years,social media and online news platforms have played an essential role in distributing news content *** of the authenticity of news has become a major *** the COVID-19 outbreak,misinformation and f...
详细信息
In the past few years,social media and online news platforms have played an essential role in distributing news content *** of the authenticity of news has become a major *** the COVID-19 outbreak,misinformation and fake news were major sources of confusion and insecurity among the general *** the first quarter of the year 2020,around 800 people died due to fake news relevant to *** major goal of this research was to discover the best learning model for achieving high accuracy and performance.A novel case study of the Fake News Classification using ELECTRA model,which achieved 85.11%accuracy score,is thus reported in this *** addition to that,a new novel dataset called COVAX-Reality containing COVID-19 vaccine-related news has been *** the COVAX-Reality dataset,the performance of FNEC is compared to several traditional learning models i.e.,Support Vector Machine(SVM),Naive Bayes(NB),Passive Aggressive Classifier(PAC),Long Short-Term Memory(LSTM),Bi-directional LSTM(Bi-LSTM)and Bi-directional Encoder Representations from Transformers(BERT).For the evaluation of FNEC,standard metrics(Precision,Recall,Accuracy,and F1-Score)were utilized.
A common cardiovascular illness with high fatality rates is coronary artery disease (CAD). Researchers have been exploring alternative methods to diagnose and assess the severity of CAD that are less invasive, cost-ef...
详细信息
The degradation of optical remote sensing images due to atmospheric haze poses a significant obstacle,profoundly impeding their effective utilization across various *** methodologies have emerged as pivotal components...
详细信息
The degradation of optical remote sensing images due to atmospheric haze poses a significant obstacle,profoundly impeding their effective utilization across various *** methodologies have emerged as pivotal components of image preprocessing,fostering an improvement in the quality of remote sensing *** enhancement renders remote sensing data more indispensable,thereby enhancing the accuracy of target *** defogging techniques based on simplistic atmospheric degradation models have proven inadequate for mitigating non-uniform haze within remotely sensed *** response to this challenge,a novel UNet Residual Attention Network(URA-Net)is *** paradigmatic approach materializes as an end-to-end convolutional neural network distinguished by its utilization of multi-scale dense feature fusion clusters and gated jump *** essence of our methodology lies in local feature fusion within dense residual clusters,enabling the extraction of pertinent features from both preceding and current local data,depending on contextual *** intelligently orchestrated gated structures facilitate the propagation of these features to the decoder,resulting in superior outcomes in haze *** validation through a plethora of experiments substantiates the efficacy of URA-Net,demonstrating its superior performance compared to existing methods when applied to established datasets for remote sensing image *** the RICE-1 dataset,URA-Net achieves a Peak Signal-to-Noise Ratio(PSNR)of 29.07 dB,surpassing the Dark Channel Prior(DCP)by 11.17 dB,the All-in-One Network for Dehazing(AOD)by 7.82 dB,the Optimal Transmission Map and Adaptive Atmospheric Light For Dehazing(OTM-AAL)by 5.37 dB,the Unsupervised Single Image Dehazing(USID)by 8.0 dB,and the Superpixel-based Remote Sensing Image Dehazing(SRD)by 8.5 *** noteworthy,on the SateHaze1k dataset,URA-Net attains preeminence in overall performance,yieldi
In an infrastructure cloud environment, task scheduling should focus on optimizing execution time and saving energy. The data center consumes a large amount of energy during the execution of the task. Energy-saving te...
详细信息
The immense volume of data generated and collected by smart devices has significantly enhanced various aspects of our daily lives. However, safeguarding the sensitive information shared among these devices is crucial....
详细信息
Kidney disease (KD) is a gradually increasing global health concern. It is a chronic illness linked to higher rates of morbidity and mortality, a higher risk of cardiovascular disease and numerous other illnesses, and...
详细信息
暂无评论