Cervical cancer remains the top killer of women at a young age in the world, 85% of cases are detected in low-income countries. Preventive measures and therapeutic response are enhanced if potential hazards are identi...
详细信息
Predicting RNA binding protein(RBP) binding sites on circular RNAs(circ RNAs) is a fundamental step to understand their interaction mechanism. Numerous computational methods are developed to solve this problem, but th...
详细信息
Predicting RNA binding protein(RBP) binding sites on circular RNAs(circ RNAs) is a fundamental step to understand their interaction mechanism. Numerous computational methods are developed to solve this problem, but they cannot fully learn the features. Therefore, we propose circ-CNNED, a convolutional neural network(CNN)-based encoding and decoding framework. We first adopt two encoding methods to obtain two original matrices. We preprocess them using CNN before fusion. To capture the feature dependencies, we utilize temporal convolutional network(TCN) and CNN to construct encoding and decoding blocks, respectively. Then we introduce global expectation pooling to learn latent information and enhance the robustness of circ-CNNED. We perform circ-CNNED across 37 datasets to evaluate its effect. The comparison and ablation experiments demonstrate that our method is superior. In addition, motif enrichment analysis on four datasets helps us to explore the reason for performance improvement of circ-CNNED.
Offensive messages on social media,have recently been frequently used to harass and criticize *** recent studies,many promising algorithms have been developed to identify offensive *** algorithms analyze text in a uni...
详细信息
Offensive messages on social media,have recently been frequently used to harass and criticize *** recent studies,many promising algorithms have been developed to identify offensive *** algorithms analyze text in a unidirectional manner,where a bidirectional method can maximize performance results and capture semantic and contextual information in *** addition,there are many separate models for identifying offensive texts based on monolin-gual and multilingual,but there are a few models that can detect both monolingual and multilingual-based offensive *** this study,a detection system has been developed for both monolingual and multilingual offensive texts by combining deep convolutional neural network and bidirectional encoder representations from transformers(Deep-BERT)to identify offensive posts on social media that are used to harass *** paper explores a variety of ways to deal with multilin-gualism,including collaborative multilingual and translation-based ***,the Deep-BERT is tested on the Bengali and English datasets,including the different bidirectional encoder representations from transformers(BERT)pre-trained word-embedding techniques,and found that the proposed Deep-BERT’s efficacy outperformed all existing offensive text classification algorithms reaching an accuracy of 91.83%.The proposed model is a state-of-the-art model that can classify both monolingual-based and multilingual-based offensive texts.
To address the matching problem caused by the significant differences in spatial features, spectrum and contrast between heterologous images, a heterologous image matching method based on salience region is proposed i...
详细信息
In the development of linear quadratic regulator(LQR) algorithms, the Riccati equation approach offers two important characteristics——it is recursive and readily meets the existence condition. However, these attribu...
详细信息
In the development of linear quadratic regulator(LQR) algorithms, the Riccati equation approach offers two important characteristics——it is recursive and readily meets the existence condition. However, these attributes are applicable only to transformed singular systems, and the efficiency of the regulator may be undermined if constraints are violated in nonsingular versions. To address this gap, we introduce a direct approach to the LQR problem for linear singular systems, avoiding the need for any transformations and eliminating the need for regularity assumptions. To achieve this goal, we begin by formulating a quadratic cost function to derive the LQR algorithm through a penalized and weighted regression framework and then connect it to a constrained minimization problem using the Bellman's criterion. Then, we employ a dynamic programming strategy in a backward approach within a finite horizon to develop an LQR algorithm for the original system. To accomplish this, we address the stability and convergence analysis under the reachability and observability assumptions of a hypothetical system constructed by the pencil of augmented matrices and connected using the Hamiltonian diagonalization technique.
We have witnessed the emergence of superhuman intelligence thanks to the fast development of large language models(LLMs) and multimodal language models. As the application of such superhuman models becomes increasingl...
详细信息
We have witnessed the emergence of superhuman intelligence thanks to the fast development of large language models(LLMs) and multimodal language models. As the application of such superhuman models becomes increasingly popular, a critical question arises: how can we ensure they still remain safe, reliable, and aligned well with human values encompassing moral values, Schwartz's Values, ethics, and many more? In this position paper, we discuss the concept of superalignment from a learning perspective to answer this question by outlining the learning paradigm shift from large-scale pretraining and supervised fine-tuning, to alignment training. We define superalignment as designing effective and efficient alignment algorithms to learn from noisy-labeled data(point-wise samples or pair-wise preference data) in a scalable way when the task is very complex for human experts to annotate and when the model is stronger than human experts. We highlight some key research problems in superalignment, namely, weak-to-strong generalization, scalable oversight, and evaluation. We then present a conceptual framework for superalignment, which comprises three modules: an attacker which generates the adversary queries trying to expose the weaknesses of a learner model, a learner which refines itself by learning from scalable feedbacks generated by a critic model with minimal human experts, and a critic which generates critics or explanations for a given query-response pair, with a target of improving the learner by criticizing. We discuss some important research problems in each component of this framework and highlight some interesting research ideas that are closely related to our proposed framework, for instance, self-alignment, self-play, self-refinement, and more. Last, we highlight some future research directions for superalignment, including the identification of new emergent risks and multi-dimensional alignment.
Machine learning has profoundly transformed various industries, notably revolutionizing the retail sector through diverse applications that significantly enhance operational efficiency and performance. This comprehens...
详细信息
With the increasing complexity of graph query processing tasks, it is difficult for users to obtain the accurate cardinality before or during the execution of query tasks. Accurate estimate query cardinality is crucia...
详细信息
Fog computing brings computational services near the network edge to meet the latency constraints of cyber-physical System(CPS)*** devices enable limited computational capacity and energy availability that hamper end ...
详细信息
Fog computing brings computational services near the network edge to meet the latency constraints of cyber-physical System(CPS)*** devices enable limited computational capacity and energy availability that hamper end user *** designed a novel performance measurement index to gauge a device’s resource *** examination addresses the offloading mechanism issues,where the end user(EU)offloads a part of its workload to a nearby edge server(ES).Sometimes,the ES further offloads the workload to another ES or cloud server to achieve reliable performance because of limited resources(such as storage and computation).The manuscript aims to reduce the service offloading rate by selecting a potential device or server to accomplish a low average latency and service completion time to meet the deadline constraints of sub-divided *** this regard,an adaptive online status predictive model design is significant for prognosticating the asset requirement of arrived services to make float ***,the development of a reinforcement learning-based flexible x-scheduling(RFXS)approach resolves the service offloading issues,where x=service/resource for producing the low latency and high performance of the *** approach to the theoretical bound and computational complexity is derived by formulating the system efficiency.A quadratic restraint mechanism is employed to formulate the service optimization issue according to a set ofmeasurements,as well as the behavioural association rate and adulation *** system managed an average 0.89%of the service offloading rate,with 39 ms of delay over complex scenarios(using three servers with a 50%service arrival rate).The simulation outcomes confirm that the proposed scheme attained a low offloading uncertainty,and is suitable for simulating heterogeneous CPS frameworks.
A mobile ad hoc network (MANET) is an independent wireless temporary network established by employing a set of mobile nodes (i.e. laptops, smartphones, iPods, etc.) appropriate for the environment in which the network...
详细信息
A mobile ad hoc network (MANET) is an independent wireless temporary network established by employing a set of mobile nodes (i.e. laptops, smartphones, iPods, etc.) appropriate for the environment in which the network infrastructures are not fixed. The most common problems faced by MANET are energy efficiency, high energy consumption, low network lifetime as well as high traffic overhead which create an impact on overall network topology. Hence, it is necessary to provide an energy-effective CH election to take steps against such issues. Therefore, this paper proposes a novel model to enhance the network lifetime and energy efficiency by performing a routing strategy in MANET. In this paper, an optimal CH is selected by proposing a novel Fuzzy Marine White Shark optimization (FMWSO) algorithm which is obtained by integrating fuzzy operation with two optimization algorithms namely the marine predator algorithm and white shark optimizer. The proposed approach comprises three diverse stages namely Generation of data, Cluster Generation and CH selection. A novel FMWSO algorithm is proposed in such a way to determine the CH selection in MANET thereby enhancing the network topology, network lifetime and minimizing the overhead rate, and energy consumption. Finally, the performance of the proposed FMWSO approach is compared with various other existing techniques to determine the effectiveness of the system. The proposed FMWSO approach consumes minimum energy of 0.62 mJ which is lower than other approaches.
暂无评论