By analyzing data gathered through Online Learning(OL)systems,data mining can be used to unearth hidden relationships between topics and trends in student ***,in this paper,we show how data mining techniques such as c...
详细信息
By analyzing data gathered through Online Learning(OL)systems,data mining can be used to unearth hidden relationships between topics and trends in student ***,in this paper,we show how data mining techniques such as clustering and association rule algorithms can be used on historical data to develop a unique recommendation system *** our implementation,we utilize historical data to generate association rules specifically for student test marks below a threshold of 60%.By focusing on marks below this threshold,we aim to identify and establish associations based on the patterns of weakness observed in the past ***,we leverage K-means clustering to provide instructors with visual representations of the generated *** strategy aids instructors in better comprehending the information and associations produced by the *** clustering helps visualize and organize the data in a way that makes it easier for instructors to analyze and gain insights,enabling them to support the verification of the relationship between *** can be a useful tool to deliver better feedback to students as well as provide better insights to instructors when developing their *** paper further shows a prototype implementation of the above-mentioned concepts to gain opinions and insights about the usability and viability of the proposed system.
Breast cancer poses a significant global threat, highlighting the urgent need for early detection to reduce mortality rates. Researchers are working to minimize the occurrence of false positives and false negatives, t...
详细信息
Resonant operation, exploiting high quality-factor planar inductors, has recently enabled gigahertz (GHz) applications for large-area electronics (LAE), providing a new technology platform for large-scale and flexible...
详细信息
There is an emerging interest in using agile methodologies in Global software Development(GSD)to get the mutual benefits of both *** is currently admired by many development teams as an agile most known meth-odology a...
详细信息
There is an emerging interest in using agile methodologies in Global software Development(GSD)to get the mutual benefits of both *** is currently admired by many development teams as an agile most known meth-odology and considered adequate for collocated *** the same time,stake-holders in GSD are dispersed by geographical,temporal,and socio-cultural *** to the controversial nature of Scrum and GSD,many significant challenges arise that might restrict the use of Scrum in *** conducted a Sys-tematic Literature Review(SLR)by following Kitchenham guidelines to identify the challenges that limit the use of Scrum in GSD and to explore the mitigation strategies adopted by practitioners to resolve the *** validate our reviewfindings,we conducted an industrial survey of 305 *** results of our study are consolidated into a research *** framework represents current best practices and recommendations to mitigate the identified distributed scrum challenges and is validated byfive experts of distributed *** of the expert review were found supportive,reflecting that the framework will help the stakeholders deliver sustainable products by effectively mitigating the identified challenges.
The long-term participation of trained and competent employees is required to improve the morale, productivity, safety, value, and autonomy of an organization. In small and medium-sized software industries, the long-t...
详细信息
This system provides a comprehensive overview of hospital environments by tracking air quality, dust, temperature, and humidity simultaneously, offering a more complete picture of indoor conditions than systems that f...
详细信息
In telemedicine applications, it is crucial to ensure the authentication, confidentiality, and privacy of medical data due to its sensitive nature and the importance of the patient information it contains. Communicati...
详细信息
In telemedicine applications, it is crucial to ensure the authentication, confidentiality, and privacy of medical data due to its sensitive nature and the importance of the patient information it contains. Communication through open networks is insecure and has many vulnerabilities, making it susceptible to unauthorized access and misuse. Encryption models are used to secure medical data from unauthorized access. In this work, we propose a bit-level encryption model having three phases: preprocessing, confusion, and diffusion. This model is designed for different types of medical data including patient information, clinical data, medical signals, and images of different modalities. Also, the proposed model is effectively implemented for grayscale and color images with varying aspect ratios. Preprocessing has been applied based on the type of medical data. A random permutation has been used to scramble the data values to remove the correlation, and multilevel chaotic maps are fused with the cyclic redundancy check method. A circular shift is used in the diffusion phase to increase randomness and security, providing protection against potential attacks. The CRC method is further used at the receiver side for error detection. The performance efficiency of the proposed encryption model is proved in terms of histogram analysis, information entropy, correlation analysis, signal-to-noise ratio, peak signal-to-noise ratio, number of pixels changing rate, and unified average changing intensity. The proposed bit-level encryption model therefore achieves information entropy values ranging from 7.9669 to 8.000, which is close to the desired value of 8. Correlation coefficient values of the encrypted data approach to zero or are negative, indicating minimal correlation in encrypted data. Resistance against differential attacks is demonstrated by NPCR and UACI values exceeding 0.9960 and 0.3340, respectively. The key space of the proposed model is 1096, which is substantially mor
Fruit safety is a critical component of the global economy, particularly within the agricultural sector. There has been a recent surge in the incidence of diseases affecting fruits, leading to economic setbacks in agr...
详细信息
Every day,websites and personal archives create more and more *** size of these archives is *** comfort of use of these huge digital image gatherings donates to their ***,not all of these folders deliver relevant inde...
详细信息
Every day,websites and personal archives create more and more *** size of these archives is *** comfort of use of these huge digital image gatherings donates to their ***,not all of these folders deliver relevant indexing *** the outcomes,it is dif-ficult to discover data that the user can be absorbed ***,in order to determine the significance of the data,it is important to identify the contents in an informative *** annotation can be one of the greatest problematic domains in multimedia research and computer ***,in this paper,Adap-tive Convolutional Deep Learning Model(ACDLM)is developed for automatic image ***,the databases are collected from the open-source system which consists of some labelled images(for training phase)and some unlabeled images{Corel 5 K,MSRC v2}.After that,the images are sent to the pre-processing step such as colour space quantization and texture color class *** pre-processed images are sent to the segmentation approach for efficient labelling technique using J-image segmentation(JSEG).Thefinal step is an auto-matic annotation using ACDLM which is a combination of Convolutional Neural Network(CNN)and Honey Badger Algorithm(HBA).Based on the proposed classifier,the unlabeled images are *** proposed methodology is imple-mented in MATLAB and performance is evaluated by performance metrics such as accuracy,precision,recall and F1_*** the assistance of the pro-posed methodology,the unlabeled images are labelled.
Intelligent Transportation Systems (ITS) generate massive amounts of Big Data through both sensory and non-sensory platforms. The data support batch processing as well as stream processing, which are essential for rel...
详细信息
Intelligent Transportation Systems (ITS) generate massive amounts of Big Data through both sensory and non-sensory platforms. The data support batch processing as well as stream processing, which are essential for reliable operations on the roads and connected vehicles in ITS. Despite the immense potential of Big Data intelligence in ITS, autonomous vehicles are largely confined to testing and trial phases. The research community is working tirelessly to improve the reliability of ITS by designing new protocols, standards, and connectivity paradigms. In the recent past, several surveys have been conducted that focus on Big Data Intelligence for ITS, yet none of them have comprehensively addressed the fundamental challenges hindering the widespread adoption of autonomous vehicles on the roads. Our survey aims to help readers better understand the technological advancements by delving deep into Big Data architecture, focusing on data acquisition, data storage, and data visualization. We reviewed sensory and non-sensory platforms for data acquisition, data storage repositories for archival and retrieval of large datasets, and data visualization for presenting the processed data in an interactive and comprehensible format. To this end, we discussed the current research progress by comprehensively covering the literature and highlighting challenges that urgently require the attention of the research community. Based on the concluding remarks, we argued that these challenges hinder the widespread presence of autonomous vehicles on the roads. Understanding these challenges is important for a more informed discussion on the future of self-driven technology. Moreover, we acknowledge that these challenges not only affect individual layers but also impact the functionality of subsequent layers. Finally, we outline our future work that explores how resolving these challenges could enable the realization of innovations such as smart charging systems on the roads and data centers
暂无评论