咨询与建议

限定检索结果

文献类型

  • 2,849 篇 会议
  • 2,274 篇 期刊文献
  • 25 册 图书

馆藏范围

  • 5,148 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 2,948 篇 工学
    • 2,291 篇 计算机科学与技术...
    • 1,973 篇 软件工程
    • 640 篇 信息与通信工程
    • 491 篇 生物工程
    • 468 篇 控制科学与工程
    • 340 篇 生物医学工程(可授...
    • 337 篇 电气工程
    • 299 篇 光学工程
    • 241 篇 电子科学与技术(可...
    • 157 篇 化学工程与技术
    • 153 篇 机械工程
    • 151 篇 网络空间安全
    • 139 篇 安全科学与工程
    • 123 篇 动力工程及工程热...
    • 102 篇 交通运输工程
    • 92 篇 仪器科学与技术
  • 1,690 篇 理学
    • 763 篇 数学
    • 564 篇 生物学
    • 505 篇 物理学
    • 310 篇 统计学(可授理学、...
    • 197 篇 化学
    • 142 篇 系统科学
  • 833 篇 管理学
    • 488 篇 管理科学与工程(可...
    • 387 篇 图书情报与档案管...
    • 235 篇 工商管理
  • 342 篇 医学
    • 300 篇 临床医学
    • 269 篇 基础医学(可授医学...
    • 154 篇 公共卫生与预防医...
    • 148 篇 药学(可授医学、理...
  • 156 篇 法学
    • 142 篇 社会学
  • 73 篇 经济学
  • 53 篇 农学
  • 48 篇 教育学
  • 20 篇 文学
  • 2 篇 军事学
  • 1 篇 艺术学

主题

  • 361 篇 accuracy
  • 271 篇 deep learning
  • 206 篇 training
  • 203 篇 machine learning
  • 186 篇 real-time system...
  • 185 篇 convolutional ne...
  • 182 篇 feature extracti...
  • 166 篇 computational mo...
  • 156 篇 predictive model...
  • 129 篇 data models
  • 105 篇 internet of thin...
  • 105 篇 artificial intel...
  • 98 篇 reinforcement le...
  • 96 篇 optimization
  • 94 篇 support vector m...
  • 90 篇 security
  • 84 篇 semantics
  • 83 篇 machine learning...
  • 76 篇 measurement
  • 74 篇 adaptation model...

机构

  • 176 篇 department of co...
  • 142 篇 moe key lab of a...
  • 83 篇 department of co...
  • 80 篇 tencent ai lab
  • 66 篇 lovely professio...
  • 51 篇 moe key lab of a...
  • 44 篇 key laboratory o...
  • 41 篇 the islamic univ...
  • 39 篇 department of co...
  • 39 篇 the islamic univ...
  • 38 篇 shanghai ai labo...
  • 36 篇 department of co...
  • 32 篇 department of co...
  • 30 篇 university of ch...
  • 30 篇 school of comput...
  • 30 篇 school of comput...
  • 29 篇 department of cs...
  • 28 篇 department of el...
  • 26 篇 peng cheng labor...
  • 25 篇 department of co...

作者

  • 106 篇 yu kai
  • 98 篇 zhao hai
  • 57 篇 qian yanmin
  • 56 篇 yan junchi
  • 41 篇 zhang zhuosheng
  • 36 篇 chen xie
  • 33 篇 li zuchao
  • 32 篇 yanmin qian
  • 32 篇 chen lu
  • 30 篇 al-turjman fadi
  • 27 篇 lyu michael r.
  • 25 篇 fadi al-turjman
  • 23 篇 zhu su
  • 22 篇 zhu jun
  • 21 篇 guo yiwei
  • 21 篇 junchi yan
  • 21 篇 liu tongliang
  • 20 篇 ramiz salama
  • 19 篇 han bo
  • 18 篇 pareek piyush ku...

语言

  • 3,926 篇 英文
  • 1,213 篇 其他
  • 11 篇 中文
  • 2 篇 德文
  • 2 篇 朝鲜文
  • 1 篇 阿拉伯文
检索条件"机构=Department of Computer Science and Engineering in AI & ML"
5148 条 记 录,以下是4601-4610 订阅
排序:
Training of Physical Neural Networks
arXiv
收藏 引用
arXiv 2024年
作者: Momeni, Ali Rahmani, Babak Scellier, Benjamin Wright, Logan G. McMahon, Peter L. Wanjura, Clara C. Li, Yuhang Skalli, Anas Berloff, Natalia G. Onodera, Tatsuhiro Oguz, Ilker Morichetti, Francesco del Hougne, Philipp Le Gallo, Manuel Sebastian, Abu Mirhoseini, Azalia Zhang, Cheng Marković, Danijela Brunner, Daniel Moser, Christophe Gigan, Sylvain Marquardt, Florian Ozcan, Aydogan Grollier, Julie Liu, Andrea J. Psaltis, Demetri Alù, Andrea Fleury, Romain Lausanne Switzerland Microsoft Research 198 Cambridge Science Park CambridgeCB4 0AB United Kingdom Rain AI San Francisco United States Department of Applied Physics Yale University CT United States School of Applied and Engineering Physics Cornell University IthacaNY14853 United States Max Planck Institute for the Science of Light Staudtstraße 2 Erlangen91058 Germany Department of Electrical and Computer Engineering University of California Los AngelesCA90095 United States FEMTO-ST Institute Optics Department CNRS University Bourgogne Franche-Comté Besançon25030 Cedex France Department of Applied Mathematics and Theoretical Physics University of Cambridge Cambridge United Kingdom NTT Physics and Informatics Laboratories NTT Research Inc. Sunnyvale United States Lausanne Switzerland Dipartimento di Elettronica Informazione e Bioingegneria Politecnico di Milano Milan Italy Univ Rennes CNRS IETR UMR 6164 RennesF-35000 France IBM Research Europe– Zurich Rüschlikon8803 Switzerland Department of Computer Science Stanford University United States Google DeepMind 1600 Amphitheatre Parkway Mountain ViewCA94043 United States Unité Mixte de Physique CNRS/Thales CNRS Thales Université Paris-Saclay Palaiseau France Laboratoire Kastler Brossel Sorbonne Université École Normale Supérieure Collège de France CNRS UMR 8552 Paris France Laboratoire Albert Fert CNRS Thales UniversitéParis-Saclay Palaiseau91767 France Department of Physics and Astronomy University of Pennsylvania PhiladelphiaPA19104 United States Lausanne Switzerland Photonics Initiative Advanced Science Research Center City University of New York New YorkNY10031 United States Physics Program Graduate Center City University of New York New YorkNY10016 United States
Physical neural networks (PNNs) are a class of neural-like networks that leverage the properties of physical systems to perform computation. While PNNs are so far a niche research area with small-scale laboratory demo... 详细信息
来源: 评论
Limits of Private Learning with Access to Public Data
arXiv
收藏 引用
arXiv 2019年
作者: Alon, Noga Bassily, Raef Moran, Shay Department of Mathematics Princeton University Department of Computer Science & Engineering Ohio State University Google AI Princeton
We consider learning problems where the training set consists of two types of examples: private and public. The goal is to design a learning algorithm that satisfies differential privacy only with respect to the priva... 详细信息
来源: 评论
Coordinating complementary waveforms for suppressing range sidelobes in a Doppler band
arXiv
收藏 引用
arXiv 2020年
作者: Dang, Wenbing Pezeshki, Ali Howard, Stephen D. Moran, William Calderbank, Robert Department of Electrical and Computer Engineering Colorado State University Fort CollinsCO80523-1373 United States Argo AI Mountain ViewCA94041 United States Department of Electrical and Computer Engineering Department of Mathematics Colorado State University Fort CollinsCO80523-1373 United States Defence Science and Technology Group P.O. Box 1500 EdinburghSA5111 Australia Department of Electrical and Electronic Engineering University of Melbourne MelbourneVIC3010 Australia Department of Electrical Engineering Department of Computer Science Department of Mathematics at Duke University DurhamNC27708 United States
We present a general method for constructing radar transmit pulse trains and receive filters for which the radar point-spread function in delay and Doppler (radar cross-ambiguity function) is essentially free of range... 详细信息
来源: 评论
A Robust Attentional Framework for License Plate Recognition in the Wild
arXiv
收藏 引用
arXiv 2020年
作者: Zhang, Linjiang Wang, Peng Li, Hui Li, Zhen Shen, Chunhua Zhang, Yanning School of Computer Science Northwestern Polytechnical University Xi’an China National Engineering Laboratory for Integrated Aero-Space-Ground-Ocean Big Data Application Technology China School of Computer Science University of Adelaide SA5005 Australia big data and AI technology department Minsheng Fintech Corp. LTD.
Recognizing car license plates in natural scene images is an important yet still challenging task in realistic applications. Many existing approaches perform well for license plates collected under constrained conditi... 详细信息
来源: 评论
The INTERSPEECH 2020 far-field speaker verification challenge
arXiv
收藏 引用
arXiv 2020年
作者: Qin, Xiaoyi Li, Ming Bu, Hui Rao, Wei Das, Rohan Kumar Narayanan, Shrikanth Li, Haizhou Data Science Research Center Duke Kunshan University Kunshan China Department of Electrical & Computer Engineering National University of Singapore Singapore Signal Analysis and Interpretation Lab University of Southern California Los Angeles United States AI Shell Foundation Beijing China School of Computer Science Wuhan University Wuhan China
The INTERSPEECH 2020 Far-Field Speaker Verification Challenge (FFSVC 2020) addresses three different research problems under well-defined conditions: far-field text-dependent speaker verification from single microphon... 详细信息
来源: 评论
Correction: VER-Net: a hybrid transfer learning model for lung cancer detection using CT scan images
收藏 引用
BMC medical imaging 2024年 第1期24卷 128页
作者: Anindita Saha Shahid Mohammad Ganie Pijush Kanti Dutta Pramanik Rakesh Kumar Yadav Saurav Mallik Zhongming Zhao Department of Computing Science and Engineering IFTM University Moradabad Uttar Pradesh India. AI Research Centre Department of Analytics School of Business Woxsen University Hyderabad Telangana 502345 India. School of Computer Applications and Technology Galgotias University Greater Noida Uttar Pradesh 203201 India. pijushjld@yahoo.co.in. Department of Computer Science & Engineering MSOET Maharishi University of Information Technology Lucknow Uttar Pradesh India. Department of Environmental Health Harvard T. H. Chan School of Public Health Boston MA USA. Center for Precision Health McWilliams School of Biomedical Informatics The University of Texas Health Science Center at Houston Houston TX 77030 USA. zhongming.zhao@uth.tmc.edu.
来源: 评论
CN-Celeb: Multi-genre speaker recognition
arXiv
收藏 引用
arXiv 2020年
作者: Li, Lantian Liu, Ruiqi Kang, Jiawen Fan, Yue Cui, Hao Cai, Yunqi Vipperla, Ravichander Zheng, Thomas Fang Wang, Dong BNRist at Tsinghua University Beijing China China University of Mining and Technology Beijing China Department of Systems Engineering and Engineering Management Chinese University of Hong Kong China Department of Computer Science and Technology Tsinghua University China Samsung AI Center Cambridge United Kingdom Key Laboratory of Transient Physics Nanjing University of Science and Technology China
Research on speaker recognition is extending to address the vulnerability in the wild conditions, among which genre mismatch is perhaps the most challenging, for instance, enrollment with reading speech while testing ... 详细信息
来源: 评论
AutoGAN: Neural architecture search for generative adversarial networks
arXiv
收藏 引用
arXiv 2019年
作者: Gong, Xinyu Chang, Shiyu Jiang, Yifan Wang, Zhangyang Department of Computer Science & Engineering Texas A&M University MIT-IBM Watson AI Lab
Neural architecture search (NAS) has witnessed prevailing success in image classification and (very recently) segmentation tasks. In this paper, we present the first preliminary study on introducing the NAS algorithm ... 详细信息
来源: 评论
Calibrated domain-invariant learning for highly generalizable large scale re-identification
arXiv
收藏 引用
arXiv 2019年
作者: Yuan, Ye Chen, Wuyang Chen, Tianlong Yang, Yang Ren, Zhou Wang, Zhangyang Hua, Gang Department of Computer Science and Engineering Texas A&M University Walmart Technology Wormpex AI Research
Many real-world applications, such as city scale traffic monitoring and control, requires large scale re-identification. However, previous ReID methods often failed to address two limitations in existing ReID benchmar... 详细信息
来源: 评论
A multi-objective deep reinforcement learning algorithm for spatio-temporal latency optimization in mobile IoT-enabled edge computing networks
收藏 引用
Simulation Modelling Practice and Theory 2025年 143卷
作者: Khoshvaght, Parisa Haider, Amir Rahmani, Amir Masoud Gharehchopogh, Farhad Soleimanian Anka, Ferzat Lansky, Jan Hosseinzadeh, Mehdi Institute of Research and Development Duy Tan University Da Nang Viet Nam School of Engineering & Technology Duy Tan University Da Nang Viet Nam Centre for Research Impact & Outcome Chitkara University Institute of Engineering and Technology Chitkara University Punjab Rajpura140401 India Department of AI and Robotics Sejong University Seoul05006 Korea Republic of Future Technology Research Center National Yunlin University of Science and Technology Yunlin Taiwan Department of Computer Engineering Ur. C. Islamic Azad University Urmia Iran Fatih Sultan Mehmet Vakif University Istanbul Turkey Department of Computer Science and Mathematics Faculty of Economic Studies University of Finance and Administration Prague Czech Republic Pattern Recognition and Machine Learning Laboratory School of Computing Gachon University Seongnam Korea Republic of
The rapid increase in Mobile Internet of Things (IoT) devices requires novel computational frameworks. These frameworks must meet strict latency and energy efficiency requirements in Edge and Mobile Edge Computing (ME... 详细信息
来源: 评论