咨询与建议

限定检索结果

文献类型

  • 2,823 篇 会议
  • 2,277 篇 期刊文献
  • 24 册 图书

馆藏范围

  • 5,124 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 2,972 篇 工学
    • 2,306 篇 计算机科学与技术...
    • 1,974 篇 软件工程
    • 646 篇 信息与通信工程
    • 493 篇 生物工程
    • 481 篇 控制科学与工程
    • 346 篇 电气工程
    • 343 篇 生物医学工程(可授...
    • 299 篇 光学工程
    • 244 篇 电子科学与技术(可...
    • 155 篇 化学工程与技术
    • 152 篇 网络空间安全
    • 150 篇 机械工程
    • 139 篇 安全科学与工程
    • 125 篇 动力工程及工程热...
    • 103 篇 交通运输工程
    • 92 篇 仪器科学与技术
  • 1,695 篇 理学
    • 764 篇 数学
    • 567 篇 生物学
    • 505 篇 物理学
    • 310 篇 统计学(可授理学、...
    • 198 篇 化学
    • 142 篇 系统科学
  • 834 篇 管理学
    • 485 篇 管理科学与工程(可...
    • 390 篇 图书情报与档案管...
    • 234 篇 工商管理
  • 341 篇 医学
    • 302 篇 临床医学
    • 268 篇 基础医学(可授医学...
    • 154 篇 公共卫生与预防医...
    • 147 篇 药学(可授医学、理...
  • 157 篇 法学
    • 142 篇 社会学
  • 72 篇 经济学
  • 53 篇 农学
  • 48 篇 教育学
  • 21 篇 文学
  • 3 篇 军事学
  • 1 篇 艺术学

主题

  • 351 篇 accuracy
  • 267 篇 deep learning
  • 207 篇 training
  • 204 篇 machine learning
  • 183 篇 feature extracti...
  • 180 篇 real-time system...
  • 179 篇 convolutional ne...
  • 164 篇 computational mo...
  • 150 篇 predictive model...
  • 123 篇 data models
  • 105 篇 artificial intel...
  • 104 篇 internet of thin...
  • 98 篇 reinforcement le...
  • 93 篇 support vector m...
  • 93 篇 optimization
  • 88 篇 security
  • 86 篇 semantics
  • 82 篇 machine learning...
  • 76 篇 measurement
  • 72 篇 adaptation model...

机构

  • 177 篇 department of co...
  • 141 篇 moe key lab of a...
  • 80 篇 tencent ai lab
  • 76 篇 department of co...
  • 66 篇 lovely professio...
  • 51 篇 moe key lab of a...
  • 44 篇 key laboratory o...
  • 41 篇 the islamic univ...
  • 39 篇 department of co...
  • 39 篇 the islamic univ...
  • 38 篇 shanghai ai labo...
  • 36 篇 department of co...
  • 32 篇 department of co...
  • 30 篇 university of ch...
  • 30 篇 school of comput...
  • 30 篇 school of comput...
  • 29 篇 department of cs...
  • 27 篇 department of el...
  • 26 篇 peng cheng labor...
  • 25 篇 department of co...

作者

  • 106 篇 yu kai
  • 98 篇 zhao hai
  • 57 篇 qian yanmin
  • 55 篇 yan junchi
  • 41 篇 zhang zhuosheng
  • 36 篇 chen xie
  • 33 篇 li zuchao
  • 33 篇 chen lu
  • 31 篇 yanmin qian
  • 30 篇 al-turjman fadi
  • 27 篇 lyu michael r.
  • 25 篇 fadi al-turjman
  • 23 篇 zhu su
  • 22 篇 zhu jun
  • 21 篇 guo yiwei
  • 21 篇 junchi yan
  • 20 篇 ramiz salama
  • 20 篇 liu tongliang
  • 19 篇 han bo
  • 18 篇 pareek piyush ku...

语言

  • 4,462 篇 英文
  • 655 篇 其他
  • 8 篇 中文
  • 2 篇 德文
  • 2 篇 朝鲜文
检索条件"机构=Department of Computer Science and Engineering in AI & ML"
5124 条 记 录,以下是4771-4780 订阅
排序:
Travel time estimation without road networks: An urban morphological layout representation approach
arXiv
收藏 引用
arXiv 2019年
作者: Lan, Wuwei Xu, Yanyan Zhao, Bin Department of Computer Science and Engineering Ohio State University ColumbusOH43210 United States Department of City and Regional Planning University of California BerkeleyCA94720 United States Wisense AI Jinan China
Travel time estimation is a crucial task for not only personal travel scheduling but also city planning. Previous methods focus on modeling toward road segments or sub-paths, then summing up for a final prediction, wh... 详细信息
来源: 评论
Energetic electron precipitation driven by electromagnetic ion cyclotron waves from ELFIN’s low altitude perspective
arXiv
收藏 引用
arXiv 2022年
作者: Angelopoulos, V. Zhang, X.-J. Artemyev, A.V. Mourenas, D. Tsai, E. Wilkins, C. Runov, A. Liu, J. Turner, D.L. Li, W. Khurana, K. Wirz, R.E. Sergeev, V.A. Meng, X. Wu, J. Hartinger, M.D. Raita, T. Shen, Y. An, X. Shi, X. Bashir, M.F. Shen, X. Gan, L. Qin, M. Capannolo, L. Ma, Q. Russell, C.L. Masongsong, E.V. Caron, R. He, I. Iglesias, L. Jha, S. King, J. Kumar, S. Le, K. Mao, J. McDermott, A. Nguyen, K. Norris, A. Palla, A. Roosnovo Tam, J. Xie, E. Yap, R.C. Ye, S. Young, C. Adair, L.A. Shaffer, C. Chung, M. Cruce, P. Lawson, M. Leneman, D. Allen, M. Anderson, M. Arreola-Zamora, M. Artinger, J. Asher, J. Branchevsky, D. Cliffe, M. Colton, K. Costello, C. Depe, D. Domae, B.W. Eldin, S. Fitzgibbon, L. Flemming, A. Frederick, D.M. Gilbert, A. Hesford, B. Krieger, R. Lian, K. McKinney, E. Miller, J.P. Pedersen, C. Qu, Z. Rozario, R. Rubly, M. Seaton, R. Subramanian, A. Sundin, S.R. Tan, A. Thomlinson, D. Turner, W. Wing, G. Wong, C. Zarifian, A. Earth Planetary and Space Sciences Department Institute of Geophysics and Planetary Physics University of California Los Angeles Los AngelesCA90095 United States University of Texas at Dallas RichardsonTX75080 United States CEA DAM DIF Arpajon France Atmospheric and Oceanic Sciences Departments University of California Los AngelesCA United States Johns Hopkins University Applied Physics Laboratory LaurelMD United States Department of Astronomy Center for Space Physics Boston University BostonMA United States Mechanical and Aerospace Engineering Department Henry Samueli School of Engineering University of California Los AngelesCA90095 United States School of Mechanical Industrial Manufacturing Engineering Oregon State University CorvallisOR97331 United States University of St. Petersburg St. Petersburg Russia Jet Propulsion Laboratory California Institute of Technology PasadenaCA91109 United States Space Science Institute BoulderCO80301 United States Sodankylä Geophysical Observatory University of Oulu Sodankylä Finland Materials Science and Engineering Department Henry Samueli School of Engineering University of California Los AngelesCA90095 United States Deloitte Consulting New YorkNY10112 United States Computer Science Department Henry Samueli School of Engineering University of California Los AngelesCA90095 United States Microsoft RedmondWA98052 United States Physics and Astronomy Department University of California Los AngelesCA90095 United States Department of Astronomy and Astrophysics The University of Chicago ChicagoIL60637 United States Raybeam Inc. Mountain ViewCA94041 United States SpaceX HawthorneCA90250 United States Reliable Robotics Corporation Mountain ViewCA94043 United States Los Alamos National Laboratory Los AlamosNM87545 United States Mathematics Department University of California Los AngelesCA90095 United States Planet Labs PBC San FranciscoCA94107 United States KSAT Inc. De
We review comprehensive observations of electromagnetic ion cyclotron (EMIC) wave-driven energetic electron precipitation using data from the energetic electron detector on the Electron Losses and Fields InvestigatioN... 详细信息
来源: 评论
Creating and manipulating a Laughlin-type ν = 1/3 fractional quantum Hall state on a quantum computer with linear depth circuits
arXiv
收藏 引用
arXiv 2020年
作者: Rahmani, Armin Sung, Kevin J. Putterman, Harald Roushan, Pedram Ghaemi, Pouyan Jiang, Zhang Department of Physics and Astronomy and Advanced Materials Science and Engineering Center Western Washington University BellinghamWA98225 United States Kavli Institute for Theoretical Physics University of California Santa BarbaraCA93106 United States Google AI Quantum Santa BarbaraCA United States Department of Electrical Engineering and Computer Science University of Michigan Ann ArborMI48109 United States Physics Department City College of the City University of New York New YorkNY10031 United States Graduate Center of the City University of New York New YorkNY10016 United States
Here we present an efficient quantum algorithm to generate an equivalent many-body state to Laughlin’s ν = 1/3 fractional quantum Hall state on a digitized quantum computer. Our algorithm only uses quantum gates act... 详细信息
来源: 评论
Vertebrae segmentation from X-ray images using convolutional neural network  2018
Vertebrae segmentation from X-ray images using convolutional...
收藏 引用
1st International Conference on Information Hiding and Image Processing, IHIP 2018
作者: Fu, Min-Jun Lin, Chii-Jen Sun, Yung-Nien Kuok, Chan-Pang Horng, Ming-Huwi Institute of Medical Informatics National Cheng Kung University Tainan Taiwan Department of Orthopedics National Cheng Kung University Hospital Tainan Taiwan MOST AI Biomedical Research Center Department of Computer Science and Information Engineering National Cheng Kung University Tainan Taiwan Department of Computer Science and Information Engineering National Cheng Kung University Tainan Taiwan Department of Computer Science and Information Engineering National Pingtung University Pingtung Taiwan
The X-ray examination can effectively help for the diagnosis and analysis of spinal diseases because it possesses the properties of fast, non-invasive, low radiation dose and low cost. In order to obtain the valuable ... 详细信息
来源: 评论
Dynamic class learning approach for smart CBIR  6th
Dynamic class learning approach for smart CBIR
收藏 引用
6th National Conference on computer Vision, Pattern Recognition, Image Processing and Graphics, NCVPRIPG 2017
作者: Pahariya, Girraj Ravindran, Balaraman Das, Sukhendu Department of Computer Science and Engineering IIT Madras Chennai India Robert Bosch Centre for Data Science and AI IIT Madras Chennai India Visualization and Perception Lab IIT Madras Chennai India
Smart Content Based Image Retrieval (CBIR) helps to simultaneously localize and recognize all object(s) present in a scene, for image retrieval task. The major drawbacks in such kind of system are: (a) overhead for ad... 详细信息
来源: 评论
Attribute-Driven Feature Disentangling and Temporal Aggregation for Video Person Re-Identification
Attribute-Driven Feature Disentangling and Temporal Aggregat...
收藏 引用
IEEE/CVF Conference on computer Vision and Pattern Recognition
作者: Yiru Zhao Xu Shen Zhongming Jin Hongtao Lu Xian-sheng Hua Key Lab of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering Department of Computer Science and Engineering MoE Key Lab of Artificial Intelligence AI Institute Shanghai Jiao Tong University Alibaba Damo Academy Alibaba Group
Video-based person re-identification plays an important role in surveillance video analysis, expanding image-based methods by learning features of multiple frames. Most existing methods fuse features by temporal avera... 详细信息
来源: 评论
A review on generative adversarial networks: Algorithms, theory, and applications
arXiv
收藏 引用
arXiv 2020年
作者: Gui, Jie Sun, Zhenan Wen, Yonggang Tao, Dacheng Ye, Jieping Department of Computational Medicine and Bioinformatics University of Michigan United States Center for Research on Intelligent Perception and Computing Chinese Academy of Sciences Beijing100190 China School of Computer Science and Engineering Nanyang Technological University Singapore639798 Singapore UBTECH Sydney Artificial Intelligence Center School of Information Technologies Faculty of Engineering and Information Technologies University of Sydney Australia DiDi AI Labs China University of Michigan Ann Arbor United States
Generative adversarial networks (GANs) are a hot research topic recently. GANs have been widely studied since 2014, and a large number of algorithms have been proposed. However, there is few comprehensive study explai... 详细信息
来源: 评论
Asymmetric Cross-Guided Attention Network for Actor and Action Video Segmentation From Natural Language Query
Asymmetric Cross-Guided Attention Network for Actor and Acti...
收藏 引用
International Conference on computer Vision (ICCV)
作者: Hao Wang Cheng Deng Junchi Yan Dacheng Tao School of Electronic Engineering Xidian University Xi’an China Tencent AI Lab Shenzhen China Department of CSE and MoE Key Lab of Artificial Intelligence Shanghai Jiao Tong University UBTECH Sydney AI Centre School of Computer Science FEIT University of Sydney Australia
Actor and action video segmentation from natural language query aims to selectively segment the actor and its action in a video based on an input textual description. Previous works mostly focus on learning simple cor... 详细信息
来源: 评论
Modeling named entity embedding distribution into hypersphere
arXiv
收藏 引用
arXiv 2019年
作者: Zhang, Zhuosheng Tang, Bingjie Li, Zuchao Zhao, Hai Department of Computer Science and Engineering Shanghai Jiao Tong University Key Lab. of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering Shanghai Jiao Tong University Shanghai China MoE Key Lab of Artificial Intelligence AI Institute Shanghai Jiao Tong University Shanghai China Computer Science Department Brown University RI United States
This work models named entity distribution from a way of visualizing topological structure of embedding space, so that we make an assumption that most, if not all, named entities (NEs) for a language tend to aggregate... 详细信息
来源: 评论
Subword ELMo
arXiv
收藏 引用
arXiv 2019年
作者: Li, Jiangtong Zhao, Hai Li, Zuchao Bi, Wei Liu, Xiaojiang Department of Computer Science and Engineering Shanghai Jiao Tong University Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering Shanghai Jiao Tong University Shanghai China MoE Key Lab of Artificial Intelligence AI Institute Shanghai Jiao Tong University Tencent AI Lab Shenzhen China
Embedding from Language Models (ELMo) has shown to be effective for improving many natural language processing (NLP) tasks, and ELMo takes character information to compose word representation to train language models.... 详细信息
来源: 评论