咨询与建议

限定检索结果

文献类型

  • 2,823 篇 会议
  • 2,277 篇 期刊文献
  • 24 册 图书

馆藏范围

  • 5,124 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 2,972 篇 工学
    • 2,306 篇 计算机科学与技术...
    • 1,974 篇 软件工程
    • 646 篇 信息与通信工程
    • 493 篇 生物工程
    • 481 篇 控制科学与工程
    • 346 篇 电气工程
    • 343 篇 生物医学工程(可授...
    • 299 篇 光学工程
    • 244 篇 电子科学与技术(可...
    • 155 篇 化学工程与技术
    • 152 篇 网络空间安全
    • 150 篇 机械工程
    • 139 篇 安全科学与工程
    • 125 篇 动力工程及工程热...
    • 103 篇 交通运输工程
    • 92 篇 仪器科学与技术
  • 1,695 篇 理学
    • 764 篇 数学
    • 567 篇 生物学
    • 505 篇 物理学
    • 310 篇 统计学(可授理学、...
    • 198 篇 化学
    • 142 篇 系统科学
  • 834 篇 管理学
    • 485 篇 管理科学与工程(可...
    • 390 篇 图书情报与档案管...
    • 234 篇 工商管理
  • 341 篇 医学
    • 302 篇 临床医学
    • 268 篇 基础医学(可授医学...
    • 154 篇 公共卫生与预防医...
    • 147 篇 药学(可授医学、理...
  • 157 篇 法学
    • 142 篇 社会学
  • 72 篇 经济学
  • 53 篇 农学
  • 48 篇 教育学
  • 21 篇 文学
  • 3 篇 军事学
  • 1 篇 艺术学

主题

  • 351 篇 accuracy
  • 267 篇 deep learning
  • 207 篇 training
  • 204 篇 machine learning
  • 183 篇 feature extracti...
  • 180 篇 real-time system...
  • 179 篇 convolutional ne...
  • 164 篇 computational mo...
  • 150 篇 predictive model...
  • 123 篇 data models
  • 105 篇 artificial intel...
  • 104 篇 internet of thin...
  • 98 篇 reinforcement le...
  • 93 篇 support vector m...
  • 93 篇 optimization
  • 88 篇 security
  • 86 篇 semantics
  • 82 篇 machine learning...
  • 76 篇 measurement
  • 72 篇 adaptation model...

机构

  • 177 篇 department of co...
  • 141 篇 moe key lab of a...
  • 80 篇 tencent ai lab
  • 76 篇 department of co...
  • 66 篇 lovely professio...
  • 51 篇 moe key lab of a...
  • 44 篇 key laboratory o...
  • 41 篇 the islamic univ...
  • 39 篇 department of co...
  • 39 篇 the islamic univ...
  • 38 篇 shanghai ai labo...
  • 36 篇 department of co...
  • 32 篇 department of co...
  • 30 篇 university of ch...
  • 30 篇 school of comput...
  • 30 篇 school of comput...
  • 29 篇 department of cs...
  • 27 篇 department of el...
  • 26 篇 peng cheng labor...
  • 25 篇 department of co...

作者

  • 106 篇 yu kai
  • 98 篇 zhao hai
  • 57 篇 qian yanmin
  • 55 篇 yan junchi
  • 41 篇 zhang zhuosheng
  • 36 篇 chen xie
  • 33 篇 li zuchao
  • 33 篇 chen lu
  • 31 篇 yanmin qian
  • 30 篇 al-turjman fadi
  • 27 篇 lyu michael r.
  • 25 篇 fadi al-turjman
  • 23 篇 zhu su
  • 22 篇 zhu jun
  • 21 篇 guo yiwei
  • 21 篇 junchi yan
  • 20 篇 ramiz salama
  • 20 篇 liu tongliang
  • 19 篇 han bo
  • 18 篇 pareek piyush ku...

语言

  • 4,462 篇 英文
  • 655 篇 其他
  • 8 篇 中文
  • 2 篇 德文
  • 2 篇 朝鲜文
检索条件"机构=Department of Computer Science and Engineering in AI & ML"
5124 条 记 录,以下是4821-4830 订阅
排序:
Controllable dual skew divergence loss for neural machine translation
arXiv
收藏 引用
arXiv 2019年
作者: Li, Zuchao Zhao, Hai Wu, Yingting Xiao, Fengshun Jiang, Shu Department of Computer Science and Engineering Shanghai Jiao Tong University China Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering Shanghai Jiao Tong University China MoE Key Lab of Artificial Intelligence AI Institute Shanghai Jiao Tong University China
In sequence prediction tasks like neural machine translation, training with cross-entropy loss often leads to models that overgeneralize and plunge into local optima. In this paper, we propose an extended loss functio... 详细信息
来源: 评论
Adaptive leader-follower formation control and obstacle avoidance via deep reinforcement learning
arXiv
收藏 引用
arXiv 2019年
作者: Zhou, Yanlin Lu, Fan Pu, George Ma, Xiyao Sun, Runhan Chen, Hsi-Yuan Li, Xiaolin Wu, Dapeng National Science Foundation Center for Big Learning Large-scale Intelligent Systems Laboratory Department of Electrical and Computer Engineering University of Florida GainesvilleFL United States Department of Mechanical and Aerospace Engineering University of Florida GainesvilleFL United States Amazon Robotics North Reading AI Institute Tongdun Technology
We propose a deep reinforcement learning (DRL) methodology for the tracking, obstacle avoidance, and formation control of nonholonomic robots. By separating vision-based control into a perception module and a controll... 详细信息
来源: 评论
SCRDet: Towards More Robust Detection for Small, Cluttered and Rotated Objects
SCRDet: Towards More Robust Detection for Small, Cluttered a...
收藏 引用
International Conference on computer Vision (ICCV)
作者: Xue Yang Jirui Yang Junchi Yan Yue Zhang Tengfei Zhang Zhi Guo Xian Sun Kun Fu NIST Institute of Electronics Beijing (Suzhou) China University of Chinese Academy of Sciences Beijing China Department of Computer Science and Engineering Shanghai Jiao Tong University MoE Key Lab of Artificial Intelligence AI Institute Shanghai Jiao Tong University
Object detection has been a building block in computer vision. Though considerable progress has been made, there still exist challenges for objects with small size, arbitrary direction, and dense distribution. Apart f... 详细信息
来源: 评论
NTIRE 2021 Challenge on Image Deblurring
arXiv
收藏 引用
arXiv 2021年
作者: Nah, Seungjun Son, Sanghyun Lee, Suyoung Timofte, Radu Lee, Kyoung Mu Chen, Liangyu Zhang, Jie Lu, Xin Chu, Xiaojie Chen, Chengpeng Xiong, Zhiwei Xu, Ruikang Xiao, Zeyu Huang, Jie Zhang, Yueyi Xi, Si Wei, Jia Bai, Haoran Cheng, Songsheng Wei, Hao Sun, Long Tang, Jinhui Pan, Jinshan Lee, Donghyeon Lee, Chulhee Kim, Taesung Wang, Xiaobing Zhang, Dafeng Pan, Zhihong Lin, Tianwei Wu, Wenhao He, Dongliang Li, Baopu Li, Boyun Xi, Teng Zhang, Gang Liu, Jingtuo Han, Junyu Ding, Errui Tao, Guangpin Chu, Wenqing Cao, Yun Luo, Donghao Tai, Ying Lu, Tong Wang, Chengjie Li, Jilin Huang, Feiyue Chen, Hanting Chen, Shuaijun Guo, Tianyu Wang, Yunhe Zamir, Syed Waqas Arora, Aditya Khan, Salman Hayat, Munawar Khan, Fahad Shahbaz Shao, Ling Zuo, Yushen Ou, Yimin Chai, Yuanjun Shi, Lei Liu, Shuai Lei, Lei Feng, Chaoyu Zeng, Kai Yao, Yuying Liu, Xinran Zhang, Zhizhou Huang, Huacheng Zhang, Yunchen Jiang, Mingchao Zou, Wenbin Miao, Si Kim, Yangwoo Sun, Yuejin Deng, Senyou Ren, Wenqi Cao, Xiaochun Wang, Tao Suin, Maitreya Rajagopalan, A.N. Duong, Vinh Van Nguyen, Thuc Huu Yim, Jonghoon Jeon, Byeungwoo Li, Ru Xie, Junwei Han, Jong-Wook Choi, Jun-Ho Kim, Jun-Hyuk Lee, Jong-Seok Zhang, Jiaxin Peng, Fan Svitov, David Pakulich, Dmitry Kim, Jaeyeob Jeong, Jechang Department of ECE ASRI SNU Korea Republic of Computer Vision Lab ETH Zurich Switzerland University of Science and Technology of China China Megvii China Fudan University China Peking University China Netease Games AI Lab Nanjing University of Science and Technology China Guilin University of Electronic Technology China Samsung Electronics Co. Ltd Sunmoon University Asan Korea Republic of Samsung Research China Beijing China Baidu Research United States Department of Computer Vision Technology Baidu Inc China Fudan University China Megvii China Nanjing University China Tencent Noah's Ark Lab Huawei Technologies Co. Ltd Inception Institute of Artificial Intelligence Tsinghua University Beijing China North China University of Technology China Xiaomi South China University of Technology China Lab of Image Science and Technology Southeast University China China Design Group Co. Ltd China JOYY AI GROUP Fujian Normal University China Shanghai Advanced Research Institute Chinese Academy of Sciences China Institute of Information Engineering Chinese Academy of Sciences China Huawei Noah's Ark Lab Indian Institute of Technology Madras India Department of ECE Sungkyunkwan University Korea Republic of Fuzhou University China Imperial Vision Co. Ltd School of Integrated Technology Yonsei University Korea Republic of Expasoft LLC Institute of Automation and Electrometry The SB RAS Image Communication & Signal Processing Laboratory Hanyang University Korea Republic of
Motion blur is a common photography artifact in dynamic environments that typically comes jointly with the other types of degradation. This paper reviews the NTIRE 2021 Challenge on Image Deblurring. In this challenge... 详细信息
来源: 评论
Revisiting metric learning for few-shot image classification
arXiv
收藏 引用
arXiv 2019年
作者: Li, Xiaomeng Yu, Lequan Fu, Chi-Wing Fang, Meng Heng, Pheng-Ann Department of Computer Science and Engineering Chinese University of Hong Kong Hong Kong Shenzhen Key Laboratory of Virtual Reality and Human Interaction Technology Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China Tencent AI Lab United States
The goal of few-shot learning is to recognize new visual concepts with just a few amount of labeled samples in each class. Recent effective metric-based few-shot approaches employ neural networks to learn a feature si... 详细信息
来源: 评论
Probing contextualized sentence representations with visual awareness
arXiv
收藏 引用
arXiv 2019年
作者: Zhang, Zhuosheng Wang, Rui Chen, Kehai Utiyama, Masao Sumita, Eiichiro Zhao, Hai Department of Computer Science and Engineering Shanghai Jiao Tong University Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering Shanghai Jiao Tong University Shanghai China MoE Key Lab of Artificial Intelligence AI Institute Shanghai Jiao Tong University Shanghai China
We present a universal framework to model contextualized sentence representations with visual awareness that is motivated to overcome the shortcomings of the multimodal parallel data with manual annotations. For each ... 详细信息
来源: 评论
Provably efficient maximum entropy exploration
arXiv
收藏 引用
arXiv 2018年
作者: Hazan, Elad Kakade, Sham M. Singh, Karan van Soest, Abby Google AI Princeton Department of Computer Science Princeton University Allen School of Computer Science and Engineering University of Washington Department of Statistics University of Washington
Suppose an agent is in a (possibly unknown) Markov Decision Process in the absence of a reward signal, what might we hope that an agent can efficiently learn to do? This work studies a broad class of objectives that a... 详细信息
来源: 评论
Complementary time-frequency domain networks for dynamic parallel MR image reconstruction
arXiv
收藏 引用
arXiv 2020年
作者: Qin, Chen Duan, Jinming Hammernik, Kerstin Schlemper, Jo Küstner, Thomas Botnar, René Prieto, Claudia Price, Anthony N. Hajnal, Joseph V. Rueckert, Daniel Institute for Digital Communications School of Engineering University of Edinburgh Edinburgh United Kingdom Department of Computing Imperial College London London United Kingdom School of Computer Science University of Birmingham Birmingham United Kingdom Institute for AI and Informatics Klinikum Rechts der Isar Technical University of Munich Munich Germany Hyperfine Research Inc. GuilfordCT United States School of Biomedical Engineering and Imaging Sciences King's College London St. Thomas' Hospital London United Kingdom Department of Diagnostic and Interventional Radiology Medical Image and Data Analysis University Hospital of Tuebingen Tuebingen Germany
Purpose To introduce a novel deep learning based approach for fast and high-quality dynamic multi-coil MR reconstruction by learning a complementary time-frequency domain network that exploits spatio-temporal correlat... 详细信息
来源: 评论
Learning to multitask
arXiv
收藏 引用
arXiv 2018年
作者: Zhang, Yu Wei, Ying Yang, Qiang Department of Computer Science and Engineering Hong Kong University of Science and Technology Ai Lab Tencent United States
Multitask learning has shown promising performance in many applications and many multitask models have been proposed. In order to identify an effective multitask model for a given multitask problem, we propose a learn... 详细信息
来源: 评论
Hierarchical contextualized representation for named entity recognition
arXiv
收藏 引用
arXiv 2019年
作者: Luo, Ying Xiao, Fengshun Zhao, Hai Department of Computer Science and Engineering Shanghai Jiao Tong University Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering Shanghai Jiao Tong University Shanghai China MoE Key Lab of Artificial Intelligence AI Institute Shanghai Jiao Tong University Shanghai China
Named entity recognition (NER) models are typically based on the architecture of Bi-directional LSTM (BiLSTM). The constraints of sequential nature and the modeling of single input prevent the full utilization of glob... 详细信息
来源: 评论