咨询与建议

限定检索结果

文献类型

  • 2,781 篇 会议
  • 2,279 篇 期刊文献
  • 24 册 图书

馆藏范围

  • 5,084 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 2,931 篇 工学
    • 2,275 篇 计算机科学与技术...
    • 1,960 篇 软件工程
    • 643 篇 信息与通信工程
    • 492 篇 生物工程
    • 462 篇 控制科学与工程
    • 341 篇 电气工程
    • 338 篇 生物医学工程(可授...
    • 300 篇 光学工程
    • 239 篇 电子科学与技术(可...
    • 155 篇 化学工程与技术
    • 152 篇 网络空间安全
    • 149 篇 机械工程
    • 139 篇 安全科学与工程
    • 126 篇 动力工程及工程热...
    • 103 篇 交通运输工程
    • 92 篇 仪器科学与技术
  • 1,690 篇 理学
    • 764 篇 数学
    • 565 篇 生物学
    • 506 篇 物理学
    • 310 篇 统计学(可授理学、...
    • 195 篇 化学
    • 142 篇 系统科学
  • 832 篇 管理学
    • 486 篇 管理科学与工程(可...
    • 385 篇 图书情报与档案管...
    • 234 篇 工商管理
  • 337 篇 医学
    • 296 篇 临床医学
    • 265 篇 基础医学(可授医学...
    • 150 篇 公共卫生与预防医...
    • 147 篇 药学(可授医学、理...
  • 158 篇 法学
    • 143 篇 社会学
  • 73 篇 经济学
  • 51 篇 农学
  • 46 篇 教育学
  • 21 篇 文学
  • 4 篇 军事学
  • 1 篇 艺术学

主题

  • 346 篇 accuracy
  • 266 篇 deep learning
  • 206 篇 training
  • 203 篇 machine learning
  • 182 篇 feature extracti...
  • 178 篇 real-time system...
  • 176 篇 convolutional ne...
  • 161 篇 computational mo...
  • 147 篇 predictive model...
  • 121 篇 data models
  • 104 篇 internet of thin...
  • 104 篇 artificial intel...
  • 97 篇 reinforcement le...
  • 94 篇 optimization
  • 92 篇 support vector m...
  • 88 篇 security
  • 85 篇 semantics
  • 81 篇 machine learning...
  • 75 篇 measurement
  • 72 篇 adaptation model...

机构

  • 175 篇 department of co...
  • 140 篇 moe key lab of a...
  • 81 篇 tencent ai lab
  • 76 篇 department of co...
  • 66 篇 lovely professio...
  • 51 篇 moe key lab of a...
  • 45 篇 key laboratory o...
  • 41 篇 the islamic univ...
  • 41 篇 the islamic univ...
  • 39 篇 department of co...
  • 36 篇 shanghai ai labo...
  • 36 篇 department of co...
  • 32 篇 department of co...
  • 31 篇 school of comput...
  • 30 篇 university of ch...
  • 30 篇 school of comput...
  • 29 篇 department of cs...
  • 28 篇 department of el...
  • 26 篇 department of co...
  • 25 篇 peng cheng labor...

作者

  • 106 篇 yu kai
  • 98 篇 zhao hai
  • 59 篇 qian yanmin
  • 56 篇 yan junchi
  • 41 篇 zhang zhuosheng
  • 36 篇 chen xie
  • 34 篇 chen lu
  • 33 篇 li zuchao
  • 31 篇 yanmin qian
  • 30 篇 al-turjman fadi
  • 27 篇 lyu michael r.
  • 25 篇 fadi al-turjman
  • 23 篇 zhu su
  • 23 篇 zhu jun
  • 21 篇 guo yiwei
  • 21 篇 junchi yan
  • 20 篇 ramiz salama
  • 18 篇 pareek piyush ku...
  • 18 篇 liu tongliang
  • 18 篇 wu mengyue

语言

  • 4,660 篇 英文
  • 418 篇 其他
  • 8 篇 中文
  • 2 篇 朝鲜文
检索条件"机构=Department of Computer Science and Engineering in AI & ML"
5084 条 记 录,以下是4911-4920 订阅
排序:
Reinforcement learning based speech enhancement for robust speech recognition
arXiv
收藏 引用
arXiv 2018年
作者: Shen, Yih-Liang Huang, Chao-Yuan Wang, Syu-Siang Tsao, Yu Wang, Hsin-Min Chi, Tai-Shih Department of Electrical and Computer Engineering National Chiao Tung University Hsinchu China Joint Research Center for AI Technology and All Vista Healthcare MOST Taipei China Research Center for Information Technology Innovation Academia Sinica Taipei China Institute of Information Science Academia Sinica Taipei China
Conventional deep neural network (DNN)-based speech enhancement (SE) approaches aim to minimize the mean square error (MSE) between enhanced speech and clean reference. The MSE-optimized model may not directly improve... 详细信息
来源: 评论
MAT: A multimodal attentive translator for image captioning
arXiv
收藏 引用
arXiv 2017年
作者: Liu, Chang Sun, Fuchun Wang, Changhu Wang, Feng Yuille, Alan Department of Computer Science Tsinghua University China Toutiao AI Lab Department of Electronic Engineering UESTC China Cognitive Science & Computer Science Johns Hopkins University United States
In this work we formulate the problem of image captioning as a multimodal translation task. Analogous to machine translation, we present a sequence-to-sequence recurrent neural networks (RNN) model for image caption g... 详细信息
来源: 评论
Fast Characterization of Segmental Duplications in Genome Assemblies
arXiv
收藏 引用
arXiv 2018年
作者: Numanagić, Ibrahim Gökkaya, Alim S. Zhang, Lillian Berger, Bonnie Alkan, Can Hach, Faraz Computer Science and AI Lab Massachusetts Institute of Technology CambridgeMA02139 United States Department of Mathematics Massachusetts Institute of Technology CambridgeMA02139 United States Department of Computer Engineering Bilkent University Ankara06800 Turkey Vancouver Prostate Centre VancouverV6H 3Z9 Canada Department of Urologic Sciences University of British Columbia VancouverV5Z 1M9 Canada
Motivation: Segmental duplications (SDs), or low-copy repeats (LCR), are segments of DNA greater than 1 Kbp with high sequence identity that are copied to other regions of the genome. SDs are among the most important ... 详细信息
来源: 评论
Correction to: The role of machine learning in clinical research: transforming the future of evidence generation
收藏 引用
Trials 2021年 第1期22卷 593页
作者: E Hope Weissler Tristan Naumann Tomas Andersson Rajesh Ranganath Olivier Elemento Yuan Luo Daniel F Freitag James Benoit Michael C Hughes Faisal Khan Paul Slater Khader Shameer Matthew Roe Emmette Hutchison Scott H Kollins Uli Broedl Zhaoling Meng Jennifer L Wong Lesley Curtis Erich Huang Marzyeh Ghassemi Duke Clinical Research Institute Duke University School of Medicine Box 2834 Durham NC 27701 USA. Hope.weissler@duke.edu. Microsoft Research Cambridge MA USA. AstraZeneca Gothenburg Sweden. Courant Institute of Mathematical Science New York University New York NY USA. Englander Institute for Precision Medicine Weill Cornell Medical College New York NY USA. Northwestern University Clinical and Translational Sciences Institute Northwestern University Chicago IL USA. Division Pharmaceuticals Open Innovation and Digital Technologies Bayer AG Wuppertal Germany. University of Alberta Edmonton Alberta Canada. Department of Computer Science Tufts University Medford MA USA. Billion Minds Inc. Seattle WA USA. Verana Health San Francisco CA USA. Duke Clinical Research Institute Duke University School of Medicine Box 2834 Durham NC 27701 USA. Boehringer-Ingelheim Burlington Canada. Sanofi Cambridge MA USA. Sanofi Washington DC USA. Duke Forge Durham NC USA. Vector Institute University of Toronto Toronto Ontario Canada. Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology Cambridge Massachusetts 02139 USA. Institute for Medical Engineering and Science Massachusetts Institute of Technology Cambridge Massachusetts 02139 USA. CIFAR AI Chair Vector Institute Toronto Ontario Canada.
来源: 评论
Adversarially regularized autoencoders
arXiv
收藏 引用
arXiv 2017年
作者: Zhao, Jake Kim, Yoon Zhang, Kelly Rush, Alexander M. LeCun, Yann Department of Computer Science New York University Facebook AI Research School of Engineering and Applied Sciences Harvard University
Deep latent variable models, trained using variational autoencoders or generative adversarial networks, are now a key technique for representation learning of continuous structures. However, applying similar methods t... 详细信息
来源: 评论
Likelihood-free inference with emulator networks
arXiv
收藏 引用
arXiv 2018年
作者: Lueckmann, Jan-Matthis Bassetto, Giacomo Karaletsos, Theofanis Macke, Jakob H. Computational Neuroengineering Department of Electrical and Computer Engineering Technical University of Munich Germany Neural Systems Analysis Research Center Max Planck Society Bonn Germany Uber AI Labs Uber Technologies Inc. San FranciscoCA United States Centre for Cognitive Science Technische Universität Darmstadt Germany
Approximate Bayesian Computation (ABC) provides methods for Bayesian inference in simulation-based models which do not permit tractable likelihoods. We present a new ABC method which uses probabilistic neural emulator... 详细信息
来源: 评论
Bayesian deep learning for exoplanet atmospheric retrieval
arXiv
收藏 引用
arXiv 2018年
作者: Soboczenski, Frank Himes, Michael D. O'Beirne, Molly D. Zorzan, Simone Baydin, Atılım Güneş Cobb, Adam D. Gal, Yarin Angerhausen, Daniel Mascaro, Massimo Arney, Giada N. Domagal-Goldman, Shawn D. School of Population Health and Environmental Sciences King's College London Planetary Sciences Group Department of Physics University of Central Florida Department of Geology and Environmental Science University of Pittsburgh ERIN Department Luxembourg Institute of Science and Technology Department of Engineering Science University of Oxford Department of Computer Science University of Oxford Center for Space and Habitability University of Bern OCTO Applied AI Google Cloud Virtual Planetary Laboratory Team NASA Astrobiology Institute Planetary Systems Laboratory NASA Goddard Space Flight Center Planetary Environments Laboratory NASA Goddard Space Flight Center
Over the past decade, the study of extrasolar planets has evolved rapidly from plain detection and identification to comprehensive categorization and characterization of exoplanet systems and their atmospheres. Atmosp... 详细信息
来源: 评论
Distributed hybrid control strategy for multiple wind farms under symmetrical and asymmetrical faults
Distributed hybrid control strategy for multiple wind farms ...
收藏 引用
International Conference on Energy Conservation and Efficiency (ICECE)
作者: N. Shaukat B. Khan S. M. Ali Usman Munawar Z. Ullah Electrical Engineering Department COMSATS Institute of Information Technology Abbottabad Pakistan AI Khwarizmi institute of Computer Science University of Engineering and Technology Lahore
The research study in this paper develop an idea of Hybrid Control Approach (HCA) for electric grid interfaced Multiple Wind Farms (MWFs). The Doubly Fed Induction Generator (DFIG) based MWFs are considered for docume... 详细信息
来源: 评论
Underwater multi-robot convoying using visual tracking by detection
arXiv
收藏 引用
arXiv 2017年
作者: Shkurti, Florian Chang, Wei-Di Henderson, Peter Islam, Md Jahidul Higuera, Juan Camilo Gamboa Li, Jimmy Manderson, Travis Xu, Anqi Dudek, Gregory Sattar, Junaed Centre for Intelligent Machines School of Computer Science McGill University Interactive Robotics and Vision Laboratory Department of Computer Science and Engineering University of Minnesota- Twin Cities Element AI
We present a robust multi-robot convoying approach that relies on visual detection of the leading agent, thus enabling target following in unstructured 3-D environments. Our method is based on the idea of tracking-by-... 详细信息
来源: 评论
Recognizing Multi-talker Speech with Permutation Invariant Training
arXiv
收藏 引用
arXiv 2017年
作者: Yu, Dong Chang, Xuankai Qian, Yanmin Tencent AI Lab Seattle United States Department of Computer Science and Engineering Shanghai Jiao Tong University Shanghai China
In this paper, we propose a novel technique for direct recognition of multiple speech streams given the single channel of mixed speech, without first separating them. Our technique is based on permutation invariant tr... 详细信息
来源: 评论