Hyperparameter optimization (HPO) has been well-developed and evolved into a well-established research topic over the decades. With the success and wide application of deep learning, HPO has garnered increased attenti...
详细信息
Revolutionizing the urban commuting by introducing a ground-breaking AI-powered carpooling portal. This comprehensive platform provides an ultimate solution combining all the latest technologies for transportation cha...
详细信息
A groundbreaking innovation in the field of plant science revolutionizes the precise identification of nutrient deficiencies in paddy plants through meticulous leaf analysis. The methodology commences by breaking down...
详细信息
Sentiment classification using emojis on social media has become increasingly crucial in recent years. Social media commonly uses emojis to convey feelings, emotions, and moods. Hence, in this article, a Jellyfish Alg...
详细信息
Blockchain-based Payment Channel Network (PCN) routing for payment transactions includes the transfer of funds between multiple parties through a network of interconnected payment channels. These channels permit off-c...
详细信息
In academic institutions, processing and evaluating documents such as exam scripts remains a labor-intensive process susceptible to human error. Traditional digitization systems face significant challenges in handling...
详细信息
Fog computing is a key enabling technology of 6G systems as it provides quick and reliable computing,and data storage services which are required for several 6G *** Intelligence(AI)algorithms will be an integral part ...
详细信息
Fog computing is a key enabling technology of 6G systems as it provides quick and reliable computing,and data storage services which are required for several 6G *** Intelligence(AI)algorithms will be an integral part of 6G systems and efficient task offloading techniques using fog computing will improve their performance and *** this paper,the focus is on the scenario of Partial Offloading of a Task to Multiple Helpers(POMH)in which larger tasks are divided into smaller subtasks and processed in parallel,hence expediting task ***,using POMH presents challenges such as breaking tasks into subtasks and scaling these subtasks based on many interdependent factors to ensure that all subtasks of a task finish simultaneously,preventing resource ***,applying matching theory to POMH scenarios results in dynamic preference profiles of helping devices due to changing subtask sizes,resulting in a difficult-to-solve,externalities *** paper introduces a novel many-to-one matching-based algorithm,designed to address the externalities problem and optimize resource allocation within POMH ***,we propose a new time-efficient preference profiling technique that further enhances time optimization in POMH *** performance of the proposed technique is thoroughly evaluated in comparison to alternate baseline schemes,revealing many advantages of the proposed *** simulation findings indisputably show that the proposed matching-based offloading technique outperforms existing methodologies in the literature,yielding a remarkable 52 reduction in task latency,particularly under high workloads.
Eye health has become a global health concern and attracted broad *** the years,researchers have proposed many state-of-the-art convolutional neural networks(CNNs)to assist ophthalmologists in diagnosing ocular diseas...
详细信息
Eye health has become a global health concern and attracted broad *** the years,researchers have proposed many state-of-the-art convolutional neural networks(CNNs)to assist ophthalmologists in diagnosing ocular diseases efficiently and ***,most existing methods were dedicated to constructing sophisticated CNNs,inevitably ignoring the trade-off between performance and model *** alleviate this paradox,this paper proposes a lightweight yet efficient network architecture,mixeddecomposed convolutional network(MDNet),to recognise ocular *** MDNet,we introduce a novel mixed-decomposed depthwise convolution method,which takes advantage of depthwise convolution and depthwise dilated convolution operations to capture low-resolution and high-resolution patterns by using fewer computations and fewer *** conduct extensive experiments on the clinical anterior segment optical coherence tomography(AS-OCT),LAG,University of California San Diego,and CIFAR-100 *** results show our MDNet achieves a better trade-off between the performance and model complexity than efficient CNNs including MobileNets and ***,our MDNet outperforms MobileNets by 2.5%of accuracy by using 22%fewer parameters and 30%fewer computations on the AS-OCT dataset.
Brain tumor is the most serious and deadly disease, and it is formed due to abnormal cell production. There are two different sorts of tumors including benign (non-cancerous) and malignant (cancerous), and the third l...
详细信息
In the contemporary era,the global expansion of electrical grids is propelled by various renewable energy sources(RESs).Efficient integration of stochastic RESs and optimal power flow(OPF)management are critical for n...
详细信息
In the contemporary era,the global expansion of electrical grids is propelled by various renewable energy sources(RESs).Efficient integration of stochastic RESs and optimal power flow(OPF)management are critical for network *** study introduces an innovative solution,the Gaussian Bare-Bones Levy Cheetah Optimizer(GBBLCO),addressing OPF challenges in power generation systems with stochastic *** primary objective is to minimize the total operating costs of RESs,considering four functions:overall operating costs,voltage deviation management,emissions reduction,voltage stability index(VSI)and power loss ***,a carbon tax is included in the objective function to reduce carbon *** scrutiny,using modified IEEE 30-bus and IEEE 118-bus systems,validates GBBLCO’s superior performance in achieving optimal *** results demonstrate GBBLCO’s efficacy in six optimization scenarios:total cost with valve point effects,total cost with emission and carbon tax,total cost with prohibited operating zones,active power loss optimization,voltage deviation optimization and enhancing voltage stability index(VSI).GBBLCO outperforms conventional techniques in each scenario,showcasing rapid convergence and superior solution ***,GBBLCO navigates complexities introduced by valve point effects,adapts to environmental constraints,optimizes costs while considering prohibited operating zones,minimizes active power losses,and optimizes voltage deviation by enhancing the voltage stability index(VSI)*** research significantly contributes to advancing OPF,emphasizing GBBLCO’s improved global search capabilities and ability to address challenges related to local *** emerges as a versatile and robust optimization tool for diverse challenges in power systems,offering a promising solution for the evolving needs of renewable energy-integrated power grids.
暂无评论