A complete examination of Large Language Models’strengths,problems,and applications is needed due to their rising use across *** studies frequently focus on single-use situations and lack a comprehensive understandin...
详细信息
A complete examination of Large Language Models’strengths,problems,and applications is needed due to their rising use across *** studies frequently focus on single-use situations and lack a comprehensive understanding of LLM architectural performance,strengths,and *** gap precludes finding the appropriate models for task-specific applications and limits awareness of emerging LLM optimization and deployment *** this research,50 studies on 25+LLMs,including GPT-3,GPT-4,Claude 3.5,DeepKet,and hybrid multimodal frameworks like ContextDET and GeoRSCLIP,are thoroughly *** propose LLM application taxonomy by grouping techniques by task focus—healthcare,chemistry,sentiment analysis,agent-based simulations,and multimodal *** methods like parameter-efficient tuning(LoRA),quantumenhanced embeddings(DeepKet),retrieval-augmented generation(RAG),and safety-focused models(GalaxyGPT)are evaluated for dataset requirements,computational efficiency,and performance *** for ethical issues,data limited hallucinations,and KDGI-enhanced fine-tuning like Woodpecker’s post-remedy corrections are *** investigation’s scope,mad,and methods are described,but the primary results are *** work reveals that domain-specialized fine-tuned LLMs employing RAG and quantum-enhanced embeddings performbetter for context-heavy *** medical text normalization,ChatGPT-4 outperforms previous models,while two multimodal frameworks,GeoRSCLIP,increase remote ***-efficient tuning technologies like LoRA have minimal computing cost and similar performance,demonstrating the necessity for adaptive models in multiple *** discover the optimum domain-specific models,explain domain-specific fine-tuning,and present quantum andmultimodal LLMs to address scalability and cross-domain *** framework helps academics and practitioners identify,adapt,and innovate LLMs for different *** work
Cloud computing is a technology that allows the utilisation of a vast network of computers that are distributed and run in parallel with one another. The management of the multimedia files presents challenges and the ...
详细信息
Innovative technology solutions have been developed in response to the growing need for effective and customized client contact on e-commerce platforms. This work introduces an intelligent chatbot system that uses mac...
详细信息
The basis of this project is to investigate whether the YOLO, an object detection algorithm where 'You Only Look Once' constitutes the name, could be applied to develop FMCG management;together with the manage...
详细信息
The surging popularity of online movie databases has created a challenge for viewers: choosing a film from a massive library can be overwhelming. In this paper, it proposes to design a new hybrid movie recommendation ...
详细信息
The goal of this project is to draw a deeper understanding of the subjective nature behind online product reviews, largely by examining a large dataset received from Amazon that contains numerous star ratings and comm...
详细信息
Recommender systems are effective in mitigating information overload, yet the centralized storage of user data raises significant privacy concerns. Cross-user federated recommendation(CUFR) provides a promising distri...
详细信息
Recommender systems are effective in mitigating information overload, yet the centralized storage of user data raises significant privacy concerns. Cross-user federated recommendation(CUFR) provides a promising distributed paradigm to address these concerns by enabling privacy-preserving recommendations directly on user devices. In this survey, we review and categorize current progress in CUFR, focusing on four key aspects: privacy, security, accuracy, and efficiency. Firstly,we conduct an in-depth privacy analysis, discuss various cases of privacy leakage, and then review recent methods for privacy protection. Secondly, we analyze security concerns and review recent methods for untargeted and targeted *** untargeted attack methods, we categorize them into data poisoning attack methods and parameter poisoning attack methods. For targeted attack methods, we categorize them into user-based methods and item-based methods. Thirdly,we provide an overview of the federated variants of some representative methods, and then review the recent methods for improving accuracy from two categories: data heterogeneity and high-order information. Fourthly, we review recent methods for improving training efficiency from two categories: client sampling and model compression. Finally, we conclude this survey and explore some potential future research topics in CUFR.
Human activity recognition (HAR) techniques pick out and interpret human behaviors and actions by analyzing data gathered from various sensor devices. HAR aims to recognize and automatically categorize human activitie...
详细信息
Image captioning involves generating a descriptive text that encapsulates the visual information contained in an image. This ppt proposes a deep learning model for image captioning that utilizes a Vision Transformer (...
详细信息
This paper presents Secure Orchestration, a novel framework meticulously planned to uphold rigorous security measures over the profound security concerns that lie within the container orchestration platforms, especial...
详细信息
暂无评论