Mental health conditions have become a growing problem;it increases the likelihood of premature death for patients, and imposes a high economic burden on the world. However, some studies have shown that if patients ar...
详细信息
The fast pace of modern life caused people to experience more pressure from their surrounding environments. As a result, depression has emerged as one of the most common diseases. To detect depression, psychiatrists n...
详细信息
Electronic Health Records (EHR) are crucial for the success of digital healthcare, with a focus on putting consumers at the center of this transformation. However, the digitalization of healthcare records brings along...
详细信息
We propose an approach for the early detection of COVID-19 and other related lung diseases using artificial intelligence (AI) and deep learning-based methods. The proposed approach involves utilizing transfer learning...
详细信息
The exponential growth of data necessitates an effective data storage scheme,which helps to effectively manage the large quantity of *** accomplish this,Deoxyribonucleic Acid(DNA)digital data storage process can be em...
详细信息
The exponential growth of data necessitates an effective data storage scheme,which helps to effectively manage the large quantity of *** accomplish this,Deoxyribonucleic Acid(DNA)digital data storage process can be employed,which encodes and decodes binary data to and from synthesized strands of *** quantization(VQ)is a commonly employed scheme for image compression and the optimal codebook generation is an effective process to reach maximum compression *** article introduces a newDNAComputingwithWater StriderAlgorithm based Vector Quantization(DNAC-WSAVQ)technique for data Storage *** proposed DNAC-WSAVQ technique enables encoding data using DNA computing and then compresses it for effective data ***,the DNAC-WSAVQ model initially performsDNA encoding on the input images to generate a binary encoded *** addition,aWater Strider algorithm with Linde-Buzo-Gray(WSA-LBG)model is applied for the compression process and thereby storage area can be considerably *** order to generate optimal codebook for LBG,the WSA is applied to *** performance validation of the DNAC-WSAVQ model is carried out and the results are inspected under several *** comparative study highlighted the improved outcomes of the DNAC-WSAVQ model over the existing methods.
this research explores the development of a sophisticated classifier for screening spam emails and communications using Natural Language Processing (NLP). In today's digital age, where electronic communications co...
详细信息
The medical community has more concern on lung cancer *** experts’physical segmentation of lung cancers is time-consuming and needs to be *** research study’s objective is to diagnose lung tumors at an early stage t...
详细信息
The medical community has more concern on lung cancer *** experts’physical segmentation of lung cancers is time-consuming and needs to be *** research study’s objective is to diagnose lung tumors at an early stage to extend the life of humans using deep learning ***-Aided Diagnostic(CAD)system aids in the diagnosis and shortens the time necessary to detect the tumor *** application of Deep Neural Networks(DNN)has also been exhibited as an excellent and effective method in classification and segmentation *** research aims to separate lung cancers from images of Magnetic Resonance Imaging(MRI)with threshold *** Honey hook process categorizes lung cancer based on characteristics retrieved using several *** this principle,the work presents a solution for image compression utilizing a Deep Wave Auto-Encoder(DWAE).The combination of the two approaches significantly reduces the overall size of the feature set required for any future classification process performed using *** proposed DWAE-DNN image classifier is applied to a lung imaging dataset with Radial Basis Function(RBF)*** study reported promising results with an accuracy of 97.34%,whereas using the Decision Tree(DT)classifier has an accuracy of 94.24%.The proposed approach(DWAE-DNN)is found to classify the images with an accuracy of 98.67%,either as malignant or normal *** contrast to the accuracy requirements,the work also uses the benchmark standards like specificity,sensitivity,and precision to evaluate the efficiency of the *** is found from an investigation that the DT classifier provides the maximum performance in the DWAE-DNN depending on the network’s performance on image testing,as shown by the data acquired by the categorizers themselves.
In response to growing security concerns and the increasing demand for face recognition (FR) technology in various sectors, this research explores the application of deep learning techniques, specifically pre-trained ...
详细信息
In response to growing security concerns and the increasing demand for face recognition (FR) technology in various sectors, this research explores the application of deep learning techniques, specifically pre-trained Convolutional Neural Network (CNN) models, in the field of FR. The study harnesses the power of five pre-trained CNN models—DenseNet201, ResNet152V2, MobileNetV2, SeResNeXt, and Xception—for robust feature extraction, followed by SoftMax classification. A novel weighted average ensemble model, meticulously optimized through a grid search technique, is introduced to augment feature extraction and classification efficacy. Emphasizing the significance of robust data pre-processing, encompassing resizing, data augmentation, splitting, and normalization, the research endeavors to fortify the reliability of FR systems. Methodologically, the study systematically investigates hyperparameters across deep learning models, fine-tuning network depth, learning rate, activation functions, and optimization methods. Comprehensive evaluations unfold across diverse datasets to discern the effectiveness of the proposed models. Key contributions of this work encompass the utilization of pre-trained CNN models for feature extraction, extensive evaluation across multiple datasets, the introduction of a weighted average ensemble model, emphasis on robust data pre-processing, systematic hyperparameter tuning, and the utilization of comprehensive evaluation metrics. The results, meticulously analyzed, unveil the superior performance of the proposed method, consistently outshining alternative models across pivotal metrics, including Recall, Precision, F1 Score, Matthews Correlation Coefficient (MCC), and Accuracy. Notably, the proposed method attains an exceptional accuracy of 99.48% on the labeled faces in the wild (LFW) dataset, surpassing erstwhile state-of-the-art benchmarks. This research represents a significant stride in FR technology, furnishing a dependable and accurate
As a crucial data preprocessing method in data mining,feature selection(FS)can be regarded as a bi-objective optimization problem that aims to maximize classification accuracy and minimize the number of selected *** c...
详细信息
As a crucial data preprocessing method in data mining,feature selection(FS)can be regarded as a bi-objective optimization problem that aims to maximize classification accuracy and minimize the number of selected *** computing(EC)is promising for FS owing to its powerful search ***,in traditional EC-based methods,feature subsets are represented via a length-fixed individual *** is ineffective for high-dimensional data,because it results in a huge search space and prohibitive training *** work proposes a length-adaptive non-dominated sorting genetic algorithm(LA-NSGA)with a length-variable individual encoding and a length-adaptive evolution mechanism for bi-objective highdimensional *** LA-NSGA,an initialization method based on correlation and redundancy is devised to initialize individuals of diverse lengths,and a Pareto dominance-based length change operator is introduced to guide individuals to explore in promising search space ***,a dominance-based local search method is employed for further *** experimental results based on 12 high-dimensional gene datasets show that the Pareto front of feature subsets produced by LA-NSGA is superior to those of existing algorithms.
Flood disasters pose significant threats to human lives and infrastructure, necessitating advanced methods for the timely and accurate monitoring of water levels in rivers. This study introduces an innovative approach...
详细信息
暂无评论