Sleep apnea (SA) is a sleep-related breathing disorder characterized by breathing pauses during sleep. A person’s sleep schedule is significantly influenced by that person’s hectic lifestyle, which may include unhea...
详细信息
Modern apps require high computing resources for real-time data processing, allowing app users (AUs) to access real-time information. Edge computing (EC) provides dynamic computing resources to AUs for real-time data ...
详细信息
Modern apps require high computing resources for real-time data processing, allowing app users (AUs) to access real-time information. Edge computing (EC) provides dynamic computing resources to AUs for real-time data processing. However, due to resources and coverage constraints, edge servers (ESs) in specific areas can only serve a limited number of AUs. Hence, the app user allocation problem (AUAP) becomes challenging in the EC environment. This paper proposes a quantum-inspired differential evolution algorithm (QDE-UA) for efficient user allocation in the EC environment. The quantum vector is designed to provide a complete solution to the AUAP. The fitness function considers the minimum use of ES, user allocation rate (UAR), energy consumption, and load balance. Extensive simulations and hypotheses-based statistical analyses (ANOVA, Friedman test) are performed to show the significance of the proposed QDE-UA. The results indicate that QDE-UA outperforms the majority of the existing strategies with an average UAR improvement of 112.42%, and 140.62% enhancement in load balance while utilizing 13.98% fewer ESs. Due to the higher UAR, QDE-UA shows 59.28% higher total energy consumption on average. However, the lower energy consumption per AU is evidence of its energy efficiency. IEEE
The drug traceability model is used for ensuring drug quality and its safety for customers in the medical supply chain. The healthcare supply chain is a complex network, which is susceptible to failures and leakage of...
详细信息
This systematic review gave special attention to diabetes and the advancements in food and nutrition needed to prevent or manage diabetes in all its forms. There are two main forms of diabetes mellitus: Type 1 (T1D) a...
详细信息
The primary objective of fog computing is to minimize the reliance of IoT devices on the cloud by leveraging the resources of fog network. Typically, IoT devices offload computation tasks to fog to meet different task...
详细信息
The primary objective of fog computing is to minimize the reliance of IoT devices on the cloud by leveraging the resources of fog network. Typically, IoT devices offload computation tasks to fog to meet different task requirements such as latency in task execution, computation costs, etc. So, selecting such a fog node that meets task requirements is a crucial challenge. To choose an optimal fog node, access to each node's resource availability information is essential. Existing approaches often assume state availability or depend on a subset of state information to design mechanisms tailored to different task requirements. In this paper, OptiFog: a cluster-based fog computing architecture for acquiring the state information followed by optimal fog node selection and task offloading mechanism is proposed. Additionally, a continuous time Markov chain based stochastic model for predicting the resource availability on fog nodes is proposed. This model prevents the need to frequently synchronize the resource availability status of fog nodes, and allows to maintain an updated state information. Extensive simulation results show that OptiFog lowers task execution latency considerably, and schedules almost all the tasks at the fog layer compared to the existing state-of-the-art. IEEE
In the enormous field of Natural Language Processing (NLP), deciphering the intended significance of a word among a multitude of possibilities is referred to as word sense disambiguation. This process is essential for...
详细信息
Cardiovascular disease remains a major issue for mortality and morbidity, making accurate classification crucial. This paper introduces a novel heart disease classification model utilizing Electrocardiogram (ECG) sign...
详细信息
Large language models (LLMs) have demonstrated promising in-context learning capabilities, especially with instructive prompts. However, recent studies have shown that existing large models still face challenges in sp...
详细信息
The extensive utilization of the Internet in everyday life can be attributed to the substantial accessibility of online services and the growing significance of the data transmitted via the ***,this development has ex...
详细信息
The extensive utilization of the Internet in everyday life can be attributed to the substantial accessibility of online services and the growing significance of the data transmitted via the ***,this development has expanded the potential targets that hackers might *** adequate safeguards,data transmitted on the internet is significantly more susceptible to unauthorized access,theft,or *** identification of unauthorised access attempts is a critical component of cybersecurity as it aids in the detection and prevention of malicious *** research paper introduces a novel intrusion detection framework that utilizes Recurrent Neural Networks(RNN)integrated with Long Short-Term Memory(LSTM)*** proposed model can identify various types of cyberattacks,including conventional and distinctive *** networks,a specific kind of feedforward neural networks,possess an intrinsic memory *** Neural Networks(RNNs)incorporating Long Short-Term Memory(LSTM)mechanisms have demonstrated greater capabilities in retaining and utilizing data dependencies over extended *** such as data types,training duration,accuracy,number of false positives,and number of false negatives are among the parameters employed to assess the effectiveness of these models in identifying both common and unusual *** are utilised in conjunction with LSTM to support human analysts in identifying possible intrusion events,hence enhancing their decision-making capabilities.A potential solution to address the limitations of Shallow learning is the introduction of the Eccentric Intrusion Detection *** model utilises Recurrent Neural Networks,specifically exploiting LSTM *** proposed model achieves detection accuracy(99.5%),generalisation(99%),and false-positive rate(0.72%),the parameters findings reveal that it is superior to state-of-the-art techniques.
Co-saliency detection within a single image is a common vision problem that has not yet been well addressed. Existing methods often used a bottom-up strategy to infer co-saliency in an image in which salient regions a...
详细信息
Co-saliency detection within a single image is a common vision problem that has not yet been well addressed. Existing methods often used a bottom-up strategy to infer co-saliency in an image in which salient regions are firstly detected using visual primitives such as color and shape and then grouped and merged into a co-saliency map. However, co-saliency is intrinsically perceived complexly with bottom-up and top-down strategies combined in human vision. To address this problem, this study proposes a novel end-toend trainable network comprising a backbone net and two branch nets. The backbone net uses ground-truth masks as top-down guidance for saliency prediction, whereas the two branch nets construct triplet proposals for regional feature mapping and clustering, which drives the network to be bottom-up sensitive to co-salient regions. We construct a new dataset of 2019 natural images with co-saliency in each image to evaluate the proposed method. Experimental results show that the proposed method achieves state-of-the-art accuracy with a running speed of 28 fps.
暂无评论